Advertisement

Folsäure- und Vitamin-B12-Bestimmung in der Diagnostik kognitiver Störungen

Übersicht und Datenanalyse einer universitären Gedächtnisambulanz
  • Robert HaußmannEmail author
  • Cathrin Sauer
  • Stefanie Neumann
  • Anne Zweiniger
  • Jan Lange
  • Markus Donix
Originalien
  • 111 Downloads

Zusammenfassung

Vitamin-B12- und Folsäuremangelzustände sind insbesondere im höheren Lebensalter häufig. Da derartige Mangelzustände relevant dyskognitive Faktoren darstellen, ist ihre Bestimmung in der diagnostischen Abklärung kognitiver Störung bedeutsam und unverzichtbarer Bestandteil der Routinediagnostik in einer Gedächtnisambulanz. Wir geben einen Überblick über den klinischen Stellenwert von Vitamin-B12- und Folsäuremangelzuständen im Kontext kognitiver Störungen und über diesbezüglich relevante diagnostische und therapeutische Aspekte. Die Literaturübersicht wird durch eine Datenanalyse einer Kohorte von 250 Patienten aus unserer Gedächtnisambulanz ergänzt.

Schlüsselwörter

Vitamin-B12-Mangel Folsäuremangel Kognitive Störungen Leichte kognitive Störung Demenz 

Folic acid and vitamin B12 determination in the assessment of cognitive disorders

Overview and data analysis from a university outpatient memory clinic

Abstract

Vitamin B12 and folic acid deficiencies are particularly frequent conditions in older people. Since these metabolic disorders represent relevant dyscognitive factors, the assessment of vitamin B12 and folic acid levels is essential in the diagnostic approach of cognitive disorders, such as mild cognitive impairment and dementia in an outpatient memory clinic. This article summarizes the relevant diagnostic and therapeutic aspects of vitamin B12 and folic acid deficiencies and their effects on cognition. The literature review is supplemented by a data analysis of a naturalistic cohort of 250 patients from this outpatient memory clinic.

Keywords

Vitamin B12 deficiency Folic acid deficiency Cognitive impairments Mild cognitive impairment Dementia 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

R. Haussmann, C. Sauer, S. Neumann, A. Zweiniger, J. Lange und M. Donix geben an, dass kein Interessenkonflikt besteht.

Alle beschriebenen Untersuchungen am Menschen oder an menschlichem Gewebe wurden mit Zustimmung der zuständigen Ethikkommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Literatur

  1. 1.
    Schrier S, Motil K, Tirnauer J (2017) Causes and pathophysiology of vitamin B12 and folate deficiency. www.uptodate.com. Zugegriffen: 9.11.2018Google Scholar
  2. 2.
    Schrier S, Mentzer W, Tirnauer J (2017) Clinical manifestation and diagnosis of vitamin B12 and folate deficiency. www.uptodate.com. Zugegriffen: 9.11.2018Google Scholar
  3. 3.
    Carmel R (2008) How I treat cobalamin (vitamin B12) deficiency. Blood 112:2214–2222CrossRefGoogle Scholar
  4. 4.
    Reynolds E (2014) The neurology of folic acid deficiency. Handb Clin Neurol 120:927CrossRefGoogle Scholar
  5. 5.
    Green R (2017) Vitamin B12 deficiency from the perspective of a practicing hematologist. Blood 129:2603–2611CrossRefGoogle Scholar
  6. 6.
    Scaglione F, Panzavolta G (2014) Folate, folic acid and 5‑methyltetrahydrofolate are not the same thing. Xenobiotica 44:480–488CrossRefGoogle Scholar
  7. 7.
    Lindenbaum J et al (1994) Prevalence of cobalamin deficiency in the Framingham elderly population. Am J Clin Nutr 60:2–11CrossRefGoogle Scholar
  8. 8.
    Allen R et al (1993) Metabolic abnormalities in cobalamin (vitamin B12) and folate deficiency. Faseb J 7:1344–1353CrossRefGoogle Scholar
  9. 9.
    Wickramasinghe S (1995) Morphology, biology and biochemistry of cobalamin- and folate-deficient bone marrow cells. Baillieres Clin Haematol 8:441–459CrossRefGoogle Scholar
  10. 10.
    Stabler S (2013) Clinical practice. Vitamin B12 deficiency. N Engl J Med 368:149–160CrossRefGoogle Scholar
  11. 11.
    Hemmer B et al (1998) Subacute combined degeneration: clinical, electrophysiological, and magnetic resonance imaging findings. J Neurol Neurosurg Psychiatry 65:822–827CrossRefGoogle Scholar
  12. 12.
    Pittock S, Payne T, Harper C (2002) Reversible myelopathy in a 34-year-old man with vitamin B12 deficiency. Mayo Clin Proc 77:291–294CrossRefGoogle Scholar
  13. 13.
    Lindenbaum J et al (1988) Neuropsychiatric disorders caused by cobalamin deficiency in the absence of anemia or macrocytosis. N Engl J Med 318:1720–1728CrossRefGoogle Scholar
  14. 14.
    Bottiglieri T (1996) Folate, vitamin B12, and neuropsychiatric disorders. Nutr Rev 54:382–390CrossRefGoogle Scholar
  15. 15.
    Blasko I et al (2012) Conversion from mild cognitive impairment to dementia: influence of folic acid and vitamin B12 use in the VITA cohort. J Nutr Health Aging 16:687–694CrossRefGoogle Scholar
  16. 16.
    Stoopler E, Kuperstein A (2013) Glossitis secondary to vitamin B12 deficiency anemia. CMAJ 185:E582CrossRefGoogle Scholar
  17. 17.
    Zhu J et al (2013) Atrophic glossitis is attributed to cobalamin deficiency. Shanghai Kou Qiang Yi Xue 22:58–62PubMedGoogle Scholar
  18. 18.
    Garcia B et al (2009) A case report of pernicious anemia and recurrent aphthous stomatitis. J Contemp Dent Pract 10:83–89PubMedGoogle Scholar
  19. 19.
    Gulcan E et al (2008) Cyanocobalamin may be beneficial in the treatment of recurrent aphthous ulcers even when vitamin B12 levels are normal. Am J Med Sci 336:379–382CrossRefGoogle Scholar
  20. 20.
    Jessen F, Deuschl G, Maier W (2016) S3-Leitline „Demenzen“. Deutsche Gesellschaft für Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde (DGPPN). Deutsche Gesellschaft für Neurologie (DGN). https://www.awmf.org/uploads/tx_szleitlinien/038-013l_S3-Demenzen-2016-07.pdf Google Scholar
  21. 21.
    Clarfield A (2003) The decreasing prevalence of reversible dementias: an updated meta-analysis. Arch Intern Med 163:2219–2229CrossRefGoogle Scholar
  22. 22.
    Malouf R, Areosa Sastre A (2003) Vitamin B12 for cognition. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd004394 CrossRefPubMedGoogle Scholar
  23. 23.
    Gupta L et al (2016) Assessment of brain cognitive functions in patients with vitamin B12 deficiency using resting state functional MRI: a longitudinal study. Magn Reson Imaging 34:191–196CrossRefGoogle Scholar
  24. 24.
    Akdal G, Yener G, Kurt P (2008) Treatment resonsive executive and behavioral dysfunction associated with vitamin B12 deficiency. Neurocase 14:147–150CrossRefGoogle Scholar
  25. 25.
    Briani C et al (2013) Cobalamin deficiency: clinical picture and radiological findings. Nutrients 5:4521–4539CrossRefGoogle Scholar
  26. 26.
    Stabler S et al (1990) Clinical spectrum and diagnosis of cobalamin deficiency. Blood 76:871–881PubMedGoogle Scholar
  27. 27.
    Whyte E et al (2002) Cognitive and behavioural correlates of low vitamin B12 levels in elderly patients with progressive dementia. Am J Geriatr Psychiatry 10:321–327CrossRefGoogle Scholar
  28. 28.
    Moore E et al (2012) Cognitive impairment and vitamin B12: a review. Int Psychogeriatr 24:541–556CrossRefGoogle Scholar
  29. 29.
    Zhang D et al (2017) Efficacy of vitamin B supplementation on cognition in elderly patients with cognitive-related diseases. J Geriatr Psychiatry Neurol 30:50–59CrossRefGoogle Scholar
  30. 30.
    Silva D et al (2013) Do MCI patients with vitamin B12 deficiency have distinctive cognitive deficits? Bmc Res Notes 6:357CrossRefGoogle Scholar
  31. 31.
    Soysal P, Turan Isik A (2018) Vitamin B12 deficiency can be a cause of acute reversible parkinsonism and cognitive impairment in older adults. Geriatr Gerontol Int 18:650–651CrossRefGoogle Scholar
  32. 32.
    de Jager C et al (2012) Cognitive and clinical outcomes of homocysteine-lowering B‑vitamin treatemnt in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry 27:592–600CrossRefGoogle Scholar
  33. 33.
    Malouf R, Evans JG (2008) Folic acis with or without vitamin B12 for the prevention and treatment of healthy elderly and demented people. Cochrane Database Syst Rev 4.  https://doi.org/10.1002/14651858.cd004514.pub2 CrossRefPubMedGoogle Scholar
  34. 34.
    Aisen P et al (2008) High-dose B vitamin supplementation and cognitive decline in Alzheimer disease: a randomized controlled trial. JAMA 300:1774–1783CrossRefGoogle Scholar
  35. 35.
    Spence J (2016) Metabolic vitamin B12 deficiency: a missed opportunity to prevent dementia and stroke. Nutr Res 36:109–116CrossRefGoogle Scholar
  36. 36.
    Bizzaro N, Antico A (2014) Diagnosis and classification of pernicious anemia. Autoimmun Rev 13:565–568CrossRefGoogle Scholar
  37. 37.
    Pawlak R, Lester S, Babatunde T (2014) The prevalence of cobalamin deficiency among vegetarians assessed by serum vitamin B12: a review of literature. Eur J Clin Nutr 68:541–548CrossRefGoogle Scholar
  38. 38.
    Khan A, Shafiq I, Hassan Shah M (2017) Prevalence of vitamin B12 deficiency in patients with type II diabetes mellitus on metformin: a study from Khyber Pakhtunkhwa. Cureus e1577:18Google Scholar
  39. 39.
    Maes M, Fixen D, Linnebur S (2017) Adverse effects of proton-pump inhibitor use in older adults: a review of the evidence. Ther Adv Drug Saf 8:273–297CrossRefGoogle Scholar
  40. 40.
    Valente E et al (2011) Diagnostic accuracy of holotranscobalamin, methylmalonic acid, serum cobalamin, and other indicators of tissue vitamin B12 status in the elderly. Clin Chem 57:856–863CrossRefGoogle Scholar
  41. 41.
    Herrmann W et al (2003) Functional vitamin B12 deficiency and determination of holotranscobalamin in populations at risk. Clin Chem Lab Med 41:1478–1488PubMedGoogle Scholar
  42. 42.
    Carmel R (2008) How I treat cobalamin (vitamin B12) deficiency. Blood 112:2214–2221CrossRefGoogle Scholar
  43. 43.
    Schrier S (2017) Treatment of vitamin B12 and folate deficiencies. www.uptodate.com (p. 1–18). Zugegriffen: 9.11.2018Google Scholar
  44. 44.
    Kuzminski A et al (1998) Effective treatment of cobalamin deficiency with oral cobalamin. Blood 92:1191–1198PubMedGoogle Scholar
  45. 45.
    Wang H et al (2018) Oral vitamin B12 versus intramuscular vitamin B12 for vitamin B12 deficiency. Cochrane Database Syst Rev.  https://doi.org/10.1002/14651858.cd004655.pub3 CrossRefPubMedGoogle Scholar
  46. 46.
    Mills J, Molloy A, Reynolds E (2018) Do the benefits of folic acis fortification outweigh the risk of msasking vitamin B12 deficiency. BMJ 360:1–3Google Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Robert Haußmann
    • 1
    • 2
    Email author
  • Cathrin Sauer
    • 1
  • Stefanie Neumann
    • 1
  • Anne Zweiniger
    • 1
  • Jan Lange
    • 1
  • Markus Donix
    • 1
    • 2
  1. 1.Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav CarusTechnische Universität DresdenDresdenDeutschland
  2. 2.Standort DresdenDeutsches Zentrum für Neurodegenerative Erkrankungen (DZNE)DresdenDeutschland

Personalised recommendations