Advertisement

Neuronale Effekte und Biomarker antidepressiver Therapieverfahren

Aktueller Überblick aus der Perspektive der neuronalen Bildgebung
  • Verena Enneking
  • Fanni Dzvonyar
  • Udo Dannlowski
  • Ronny RedlichEmail author
CME
  • 62 Downloads

Zusammenfassung

Die Depression zählt zu den häufigsten psychischen Erkrankungen weltweit und geht mit starken Beeinträchtigungen in der Lebensqualität einher. Bildgebungsstudien zeigen, dass sich depressive Patienten und gesunde Vergleichsprobanden in der Hirnfunktion und im Volumen grauer und weißer Hirnsubstanz unterscheiden. Im Rahmen von Pharmakotherapie und Elektrokonvulsionstherapie kommt es insbesondere zu einer Volumenzunahme im Hippokampus. Dahingegen zeigt sich infolge von Psychotherapie vor allem eine Veränderung der Aktivität im anterioren cingulären Kortex (ACC). Bei der Identifikation neuroanatomischer Marker, welche allgemein mit Therapieerfolg assoziiert sind, hat sich unter anderem ein größeres Volumen des ACC herausgestellt. Biomarker in Kombination mit Mustererkennungsverfahren beinhalten ein hohes Potenzial zur Vorhersage der individuellen Erfolgswahrscheinlichkeit von Therapieverfahren.

Schlüsselwörter

Depression Neurobiologie Antidepressiva Psychotherapie Elektrokonvulsionstherapie 

Neuronal effects and biomarkers of antidepressant treatments

Current review from the perspective of neuroimaging

Abstract

Depression is one of the most frequent and disabling mental disorders worldwide and is accompanied by a severe impairment in the quality of life. There are numerous imaging studies showing differences in the volume of gray and white brain matter and function between patients suffering from depression and healthy controls. Neuroimaging studies show that pharmacotherapy and electroconvulsive therapy are accompanied by an increase of hippocampal gray matter volume while as a result of psychotherapy activity changes in the anterior cingulate cortex (ACC) have repeatedly been reported. By the identification of neuroanatomical markers, baseline volumes of the ACC have also been shown to be associated with therapy response to all treatments. The identification of such neuronal biomarkers in combination with machine learning techniques provide a promising step towards a neurobiologically based application for the prediction of treatment response.

Keywords

Depression Neurobiology Antidepressant Psychotherapy Electroconvulsive therapy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

V. Enneking, F. Dzvonyar, U. Dannlowski und R. Redlich geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Murray CJL, Vos T, Lozano R et al (2012) Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990–2010: a systematic analysis for the global burden of disease study 2010. Lancet 380:2197–2223.  https://doi.org/10.1016/S0140-6736(12)61689-4 CrossRefPubMedGoogle Scholar
  2. 2.
    Arnone D, McIntosh M, Ebmeier KP et al (2012) Magnetic resonance imaging studies in unipolar depression: Systematic review and meta-regression analyses. Eur Neuropsychopharmacol 22:1–16.  https://doi.org/10.1016/j.euroneuro.2011.05.003 CrossRefPubMedGoogle Scholar
  3. 3.
    Zaremba D, Enneking V, Meinert S et al (2018) Effects of cumulative illness severity on hippocampal gray matter volume in major depression: a voxel-based morphometry study. Psychol Med i:1–8.  https://doi.org/10.1017/S0033291718000016 CrossRefGoogle Scholar
  4. 4.
    Zaremba D, Dohm K, Redlich R et al (2018) Association of brain cortical changes with relapse in patients with major depressive disorder. JAMA Psychiatry 75:484–492.  https://doi.org/10.1001/jamapsychiatry.2018.0123 CrossRefPubMedGoogle Scholar
  5. 5.
    Stuhrmann A, Suslow T, Dannlowski U (2011) Facial emotion processing in major depression: a systematic review of neuroimaging findings. Biol Mood Anxiety Disord 1:1–17.  https://doi.org/10.1186/2045-5380-1-10 CrossRefGoogle Scholar
  6. 6.
    Redlich R, Opel N, Bürger C et al (2018) The limbic system in youth depression: brain structural and functional alterations in adolescent in-patients with severe depression. Neuropsychopharmacology 43:546–554.  https://doi.org/10.1038/npp.2017.246 CrossRefPubMedGoogle Scholar
  7. 7.
    Sheline YI, Barch DM, Price JL et al (2009) The default mode network and self-referential processes in depression. Proc Natl Acad Sci USA 106:1942–1947.  https://doi.org/10.1073/pnas.0812686106 CrossRefPubMedGoogle Scholar
  8. 8.
    DGPPN, BÄK, KBV, AWMF (Hrsg) (2015) S3-Leitlinie/Nationale VersorgungsLeitlinie Unipolare Depression – Langfassung, 2. Aufl. Bd. 5Google Scholar
  9. 9.
    Haq AU, Sitzmann AF, Goldman ML et al (2015) Response of depression to electroconvulsive therapy: a meta-analysis of clinical predictors. J Clin Psychiatry 76:1374–1384.  https://doi.org/10.4088/JCP.14r09528 CrossRefPubMedGoogle Scholar
  10. 10.
    Willner P, Scheel-Krüger J, Belzung C (2013) The neurobiology of depression and antidepressant action. Neurosci Biobehav Rev 37:2331–2371.  https://doi.org/10.1016/j.neubiorev.2012.12.007 CrossRefPubMedGoogle Scholar
  11. 11.
    Schermuly I, Wolf D, Lieb K et al (2011) State dependent posterior hippocampal volume increases in patients with major depressive disorder. J Affect Disord 135:405–409.  https://doi.org/10.1016/j.jad.2011.07.017 CrossRefPubMedGoogle Scholar
  12. 12.
    Mayberg HS, Brannan SK, Tekell JL et al (2000) Regional metabolic effects of fluoxetine in major depression: serial changes and relationship to clinical response. Biol Psychiatry 48:830–843.  https://doi.org/10.1016/S0006-3223(00)01036-2 CrossRefPubMedGoogle Scholar
  13. 13.
    Sheline YI, Barch DM, Donnelly JM et al (2001) Increased amygdala response to masked emotional faces in depressed subjects resolves with antidepressant treatment: an fMRI study. Biol Psychiatry 50:651–658CrossRefGoogle Scholar
  14. 14.
    DeRubeis RJ, Siegle GJ, Hollon SD (2008) Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nat Rev Neurosci 9:788–796.  https://doi.org/10.1038/nrn2345 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Roiser JP, Elliott R, Sahakian BJ (2012) Cognitive mechanisms of treatment in depression. Neuropsychopharmacology 37:117–136.  https://doi.org/10.1038/npp.2011.183 CrossRefPubMedGoogle Scholar
  16. 16.
    Beck AT, Rush AJ, Shaw BF, Emery G (1979) Cognitive therapy of depression. Guilford, New YorkGoogle Scholar
  17. 17.
    Du X, Mao Y, Zhang Q et al (2016) Short-term group cognitive behavior therapy contributes to recovery from mild depression: evidence from functional and structural MRI. Psychiatry Res Neuroimag 251:53–59.  https://doi.org/10.1016/j.pscychresns.2016.04.010 CrossRefGoogle Scholar
  18. 18.
    Sankar A, Scott J, Paszkiewicz A et al (2015) Neural effects of cognitive–behavioural therapy on dysfunctional attitudes in depression. Psychol Med 45:1425–1433.  https://doi.org/10.1017/S0033291714002529 CrossRefPubMedGoogle Scholar
  19. 19.
    Buchheim A, Viviani R, Kessler H et al (2012) Changes in prefrontal-limbic function in major depression after 15 months of long-term psychotherapy. PLoS ONE 7.  https://doi.org/10.1371/journal.pone.0033745 CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wiswede D, Taubner S, Buchheim A et al (2014) Tracking functional brain changes in patients with depression under psychodynamic psychotherapy using individualized stimuli. PLoS ONE 9:1–8.  https://doi.org/10.1371/journal.pone.0109037 CrossRefGoogle Scholar
  21. 21.
    Klein JP, Becker B, Hurlemann R et al (2014) Effect of specific psychotherapy for chronic depression on neural responses to emotional faces. J Affect Disord 166:93–97.  https://doi.org/10.1016/j.jad.2014.04.055 CrossRefPubMedGoogle Scholar
  22. 22.
    Wilkinson ST, Sanacora G, Bloch MH (2017) Hippocampal volume changes following Electroconvulsive therapy: a systematic review and meta-analysis. Biol Psychiatry Cogn Neurosci Neuroimaging 2:327–335.  https://doi.org/10.1016/j.bpsc.2017.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Dukart J, Regen F, Kherif F et al (2014) Electroconvulsive therapy-induced brain plasticity determines therapeutic outcome in mood disorders. Proc Natl Acad Sci U S A 111:1156–1161.  https://doi.org/10.1073/pnas.1321399111 CrossRefPubMedGoogle Scholar
  24. 24.
    Berlim MT, McGirr A, Van den Eynde F et al (2014) Effectiveness and acceptability of deep brain stimulation (DBS) of the subgenual cingulate cortex for treatment-resistant depression: a systematic review and exploratory meta-analysis. J Affect Disord 159:31–38.  https://doi.org/10.1016/j.jad.2014.02.016 CrossRefPubMedGoogle Scholar
  25. 25.
    Beall EB, Malone DA, Dale RM et al (2012) Effects of electroconvulsive therapy on brain functional activation and connectivity in depression. J Ect 28:234–241.  https://doi.org/10.1097/YCT.0b013e31825ebcc7 CrossRefPubMedGoogle Scholar
  26. 26.
    Redlich R, Bürger C, Dohm K et al (2017) Effects of electroconvulsive therapy on amygdala function in major depression—a longitudinal functional magnetic resonance imaging study. Psychol Med 47:2166–2176.  https://doi.org/10.1017/S0033291717000605 CrossRefPubMedGoogle Scholar
  27. 27.
    Teneback CC, Speer AM, Stallings LE et al (1999) Changes in Prefrontal cortex weeks of daily left prefrontal, S 426–435Google Scholar
  28. 28.
    Furtado CP, Hoy KE, Maller JJ et al (2013) An investigation of medial temporal lobe changes and cognition following antidepressant response: a prospective rTMS study. Brain Stimul 6:346–354.  https://doi.org/10.1016/j.brs.2012.06.006 CrossRefPubMedGoogle Scholar
  29. 29.
    Chen CH, Ridler K, Suckling J et al (2007) Brain imaging correlates of depressive symptom severity and predictors of symptom improvement after antidepressant treatment. Biol Psychiatry 62:407–414.  https://doi.org/10.1016/j.biopsych.2006.09.018 CrossRefPubMedGoogle Scholar
  30. 30.
    Costafreda SG, Chu C, Ashburner J, Fu CHY (2009) Prognostic and diagnostic potential of the structural neuroanatomy of depression. PLoS ONE 4:1–5.  https://doi.org/10.1371/journal.pone.0006353 CrossRefGoogle Scholar
  31. 31.
    Redlich R, Opel N, Grotegerd D et al (2016) Prediction of individual response to electroconvulsive therapy via machine learning on structural magnetic resonance imaging data. JAMA Psychiatry 73:557–564.  https://doi.org/10.1001/jamapsychiatry.2016.0316 CrossRefPubMedGoogle Scholar
  32. 32.
    Sambataro F, Doerig N, Hänggi J et al (2018) Anterior cingulate volume predicts response to psychotherapy and functional connectivity with the inferior parietal cortex in major depressive disorder. Eur Neuropsychopharmacol 28:138–148.  https://doi.org/10.1016/j.euroneuro.2017.11.008 CrossRefPubMedGoogle Scholar
  33. 33.
    Fu CHY, Steiner H, Costafreda SG (2013) Predictive neural biomarkers of clinical response in depression: a meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiol Dis 52:75–83.  https://doi.org/10.1016/j.nbd.2012.05.008 CrossRefPubMedGoogle Scholar
  34. 34.
    Joshi SH, Espinoza RT, Pirnia T et al (2016) Structural plasticity of the hippocampus and amygdala induced by electroconvulsive therapy in major depression. Biol Psychiatry 79:282–292.  https://doi.org/10.1016/j.biopsych.2015.02.029 CrossRefPubMedGoogle Scholar
  35. 35.
    Dannlowski U, Stuhrmann A, Beutelmann V et al (2012) Limbic scars: Long-term consequences of childhood maltreatment revealed by functional and structural magnetic resonance imaging. Biol Psychiatry 71:286–293.  https://doi.org/10.1016/j.biopsych.2011.10.021 CrossRefPubMedGoogle Scholar
  36. 36.
    Wade BS, Joshi SH, Njau S et al (2016) Effect of electroconvulsive therapy on striatal morphometry in major depressive disorder. Neuropsychopharmacology 5:1–30.  https://doi.org/10.1038/npp.2016.48 CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • Verena Enneking
    • 1
  • Fanni Dzvonyar
    • 1
  • Udo Dannlowski
    • 1
  • Ronny Redlich
    • 1
    Email author
  1. 1.Klinik für Psychiatrie und Psychotherapie, Universitätsklinikum MünsterUniversität MünsterMünsterDeutschland

Personalised recommendations