Advertisement

Der Nervenarzt

, Volume 90, Issue 2, pp 197–210 | Cite as

Genetik von Bewegungsstörungen – selten aber wichtig

  • Stephan KlebeEmail author
  • Dagmar Timmann
CME
  • 97 Downloads

Zusammenfassung

Seltene genetische Bewegungsstörungen sind eine heterogene Gruppe von Erkrankungen. Durch die Entwicklungen in der molekulargenetischen Diagnostik konnte die Ursache vieler dieser Erkrankungen aufgeklärt werden. Dies führte zum besseren pathophysiologischen Verständnis der Erkrankungen, aber auch dazu, dass man viele phänotypische Überschneidungen zwischen verschiedenen Erkrankungen findet. Die Einordnung der genetischen Befunde bedarf einer engen Zusammenarbeit zwischen Neurologen und Genetiker. Daraus resultiert, dass moderne Diagnoseverfahren nicht die genaue Anamnese und klinische Einordnung der genetischen Bewegungsstörungen ersetzen. Der Beitrag gibt einen Überblick über die Hauptgruppen der genetischen Bewegungsstörungen. Dabei wird im Einzelnen auf genetische Parkinson-Syndrome, Dystonien, essentiellen Tremor, genetische Chorea, zerebelläre Ataxien und die hereditären spastischen Spinalparalysen eingegangen. Einzelne Begriffe aus der Genetik werden erklärt und Unterschiede in der molekulargenetischen Diagnostik aufgezeigt.

Schlüsselwörter

Next Generation Sequencing Molekulargenetische Diagnostik Genetische Parkinson-Syndrome Dystonien Differenzialdiagnostik 

Genetics of movement disorders—rare but important

Abstract

Rare genetic movement disorders are a heterogeneous group of diseases. The causes of many of these rare movement disorders could be resolved due to the progress in molecular genetic diagnostics. This led to a better pathophysiological characterization of rare movement disorders and also to the fact that many phenotypical overlaps could be found between different diseases. The classification of genetic results requires a close cooperation between neurologists and geneticists. Therefore, modern diagnostic procedures cannot replace the clinical classification of genetic movement disorders and the exact patient history. This article provides the reader with an overview of the most important groups of genetic movement disorders. Genetic Parkinson syndromes, dystonia, essential tremor, genetic chorea, cerebellar ataxia and hereditary spastic paraplegia are dealt with in detail. For a better understanding individual genetic terms are explained and differences in molecular genetic diagnostics are presented.

Keywords

Next generation sequencing Molecular diagnostics Genetic Parkinson syndromes Dystonia Differential diagnostics 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

S. Klebe und D. Timmann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med 17(5):405–424PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Marras C, Lohmann K, Lang A, Klein C (2012) Fixing the broken system of genetic locus symbols: parkinson disease and dystonia as examples. Neurology 78(13):1016–1024PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Rossi M, Anheim M, Durr A, Klein C, Koenig M, Synofzik M et al (2018) The genetic nomenclature of recessive cerebellar ataxias. Mov Disord.  https://doi.org/10.1002/mds.27415 PubMedCrossRefGoogle Scholar
  4. 4.
    Synofzik M, Schule R (2017) Overcoming the divide between ataxias and spastic paraplegias: Shared phenotypes, genes, and pathways. Mov Disord 32(3):332–345PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Deng H, Wang P, Jankovic J (2018) The genetics of Parkinson disease. Ageing Res Rev 42:72–85PubMedCrossRefGoogle Scholar
  6. 6.
    International Parkinson Disease Genomics Consortium, Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM et al (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):641–649PubMedCentralCrossRefGoogle Scholar
  7. 7.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047CrossRefGoogle Scholar
  8. 8.
    Maraganore DM, de Andrade M, Lesnick TG, Strain KJ, Farrer MJ, Rocca WA et al (2005) High-resolution whole-genome association study of Parkinson disease. Am J Hum Genet 77(5):685–693PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Gan-Or Z, Amshalom I, Kilarski LL, Bar-Shira A, Gana-Weisz M, Mirelman A et al (2015) Differential effects of severe vs mild GBA mutations on Parkinson disease. Neurology 84(9):880–887PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.
    Mencacci NE, Isaias IU, Reich MM, Ganos C, Plagnol V, Polke JM et al (2014) Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers. Brain 137(Pt 9):2480–2492PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Lesage S, Durr A, Tazir M, Lohmann E, Leutenegger AL, Janin S et al (2006) LRRK2 G2019S as a cause of Parkinson’s disease in North African Arabs. N Engl J Med 354(4):422–423PubMedCrossRefGoogle Scholar
  12. 12.
    Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7(7):583–590PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al (2003) Alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841PubMedCrossRefGoogle Scholar
  14. 14.
    Kasten M, Hartmann C, Hampf J, Schaake S, Westenberger A, Vollstedt EJ et al (2018) Genotype-phenotype relations for the Parkinson’s Disease genes Parkin, PINK1, DJ1: MDSGene Systematic Review. Mov Disord.  https://doi.org/10.1002/mds.27352 PubMedCrossRefGoogle Scholar
  15. 15.
    Angeli A, Mencacci NE, Duran R, Aviles-Olmos I, Kefalopoulou Z, Candelario J et al (2013) Genotype and phenotype in Parkinson’s disease: lessons in heterogeneity from deep brain stimulation. Mov Disord 28(10):1370–1375PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Greenbaum L, Israeli-Korn SD, Cohen OS, Elincx-Benizri S, Yahalom G, Kozlova E et al (2013) The LRRK2 G2019S mutation status does not affect the outcome of subthalamic stimulation in patients with Parkinson’s disease. Parkinsonism Relat Disord 19(11):1053–1056PubMedCrossRefGoogle Scholar
  17. 17.
    Albanese A, Bhatia K, Bressman SB, Delong MR, Fahn S, Fung VS et al (2013) Phenomenology and classification of dystonia: a consensus update. Mov Disord 28(7):863–873PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Bruggemann N, Kuhn A, Schneider SA, Kamm C, Wolters A, Krause P et al (2015) Short- and long-term outcome of chronic pallidal neurostimulation in monogenic isolated dystonia. Neurology 84(9):895–903PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Azoulay-Zyss J, Roze E, Welter ML, Navarro S, Yelnik J, Clot F et al (2011) Bilateral deep brain stimulation of the pallidum for myoclonus-dystonia due to epsilon-sarcoglycan mutations: a pilot study. Arch Neurol 68(1):94–98PubMedCrossRefGoogle Scholar
  20. 20.
    Aravamuthan BR, Waugh JL, Stone SS (2017) Deep brain stimulation for monogenic dystonia. Curr Opin Pediatr 29(6):691–696PubMedCrossRefGoogle Scholar
  21. 21.
    Deuschl G, Berg D (2018) Essential tremor: state of the art. Nervenarzt 89(4):394–399PubMedCrossRefGoogle Scholar
  22. 22.
    Kuhlenbaumer G, Hopfner F (2018) Genetics of tremor. Nervenarzt 89(4):416–422PubMedCrossRefGoogle Scholar
  23. 23.
    Durr A (2010) Autosomal dominant cerebellar ataxias: polyglutamine expansions and beyond. Lancet Neurol 9(9):885–894PubMedCrossRefGoogle Scholar
  24. 24.
    Li M, Ma Q, Zhao X, Wang C, Wu H, Li J et al (2018) Dilemma of multiple system atrophy and spinocerebellar ataxias. J Neurol.  https://doi.org/10.1007/s00415-018-8876-x PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Depienne C, Stevanin G, Brice A, Durr A (2007) Hereditary spastic paraplegias: an update. Curr Opin Neurol 20(6):674–680PubMedCrossRefGoogle Scholar
  26. 26.
    McDermott CJ, Burness CE, Kirby J, Cox LE, Rao DG, Hewamadduma C et al (2006) Clinical features of hereditary spastic paraplegia due to spastin mutation. Neurology 67(1):45–51PubMedCrossRefGoogle Scholar
  27. 27.
    Schule R, Siddique T, Deng HX, Yang Y, Donkervoort S, Hansson M et al (2010) Marked accumulation of 27-hydroxycholesterol in SPG5 patients with hereditary spastic paresis. J Lipid Res 51(4):819–823PubMedPubMedCentralCrossRefGoogle Scholar
  28. 28.
    Stevanin G, Santorelli FM, Azzedine H, Coutinho P, Chomilier J, Denora PS et al (2007) Mutations in SPG11, encoding spatacsin, are a major cause of spastic paraplegia with thin corpus callosum. Nat Genet 39(3):366–372PubMedCrossRefGoogle Scholar
  29. 29.
    Tsaousidou MK, Ouahchi K, Warner TT, Yang Y, Simpson MA, Laing NG et al (2008) Sequence alterations within CYP7B1 implicate defective cholesterol homeostasis in motor-neuron degeneration. Am J Hum Genet 82(2):510–515PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Schule R, Wiethoff S, Martus P, Karle KN, Otto S, Klebe S et al (2016) Hereditary spastic paraplegia: clinicogenetic lessons from 608 patients. Ann Neurol 79(4):646–658PubMedCrossRefGoogle Scholar
  31. 31.
    Choquet K, Tetreault M, Yang S, La Piana R, Dicaire MJ, Vanstone MR et al (2016) SPG7 mutations explain a significant proportion of French Canadian spastic ataxia cases. Eur J Hum Genet 24(7):1016–1021PubMedCrossRefGoogle Scholar
  32. 32.
    Pfeffer G, Pyle A, Griffin H, Miller J, Wilson V, Turnbull L et al (2015) SPG7 mutations are a common cause of undiagnosed ataxia. Neurology 84(11):1174–1176PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Daoud H, Zhou S, Noreau A, Sabbagh M, Belzil V, Dionne-Laporte A et al (2012) Exome sequencing reveals SPG11 mutations causing juvenile ALS. Neurobiol Aging 33(4):839e5–839e9CrossRefGoogle Scholar
  34. 34.
    Mercuri E, Darras BT, Chiriboga CA, Day JW, Campbell C, Connolly AM et al (2018) Nusinersen versus sham control in later-onset spinal muscular atrophy. N Engl J Med 378(7):625–635PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik für NeurologieUniversitätsmedizin EssenEssenDeutschland

Personalised recommendations