Advertisement

Der Nervenarzt

, Volume 90, Issue 1, pp 73–88 | Cite as

Hirnstimulation zur selektiven Behandlung von Zielsymptomen der Schizophrenie

Nichtinvasive und invasive Konzepte
  • Thomas M. KinfeEmail author
  • René Hurlemann
CME
  • 375 Downloads

Zusammenfassung

Ein Drittel der Patienten mit Schizophrenie respondiert nur bedingt auf etablierte Therapien. Hirnstimulationsverfahren stellen innovative und komplementäre Behandlungsstrategien dar. Akustische Halluzinationen, kognitive Alteration und Negativsymptome sind die bisher meist untersuchten Zieldomänen. Die dokumentierten Effekte sind stets als Synergismus zwischen Stimulation und den etablierten Therapien zu verstehen. Unter Berücksichtigung vergleichender Interventionsstudien und standardisierter technischer Parameter bewerten aktuelle Metaanalysen die Effekte der Elektrokonvulsionstherapie, der transkraniellen Magnetstimulation und der transkraniellen Gleichstromstimulation als positiv. Invasive (tiefe Hirnstimulation) oder läsionelle (Ultraschallablation) Verfahren befinden sich noch in der klinischen Erprobung. Ergänzende präinterventionelle Untersuchungsmethoden (Elektrophysiologie, Bildgebung, Molekularbiologie) könnten zukünftig die Konzeptualisierung personalisierter und prädiktiver Diagnose- und Behandlungsstrategien ermöglichen.

Schlüsselwörter

Elektrokonvulsionstherapie Wechselstrom-/Gleichstromstimulation Repetitive transkranielle Magnetstimulation Stereotaktische tiefe Hirnmodulation Personalisierte, prädiktive Hirnstimulation 

Brain stimulation for the selective treatment of schizophrenia symptom domains

Non-invasive and invasive concepts

Abstract

Given that one third of patients with schizophrenia (SZ) only show limited response to established treatments, alternative therapeutic strategies such as non-invasive/invasive brain stimulation approaches have emerged as an adjunctive treatment option for distinct SZ symptom domains (e.g. acoustic hallucinations, negative/positive symptoms and cognitive impairment). Taking comparative interventional studies and standardized technical parameters into consideration, current meta-analyses indicate that adjunctive electroconvulsive therapy, repetitive transcranial magnetic stimulation and transcranial direct current stimulation have a positive effect. Invasive deep brain stimulation and MR-guided ultrasound brain ablation procedures represent treatment modalities that are currently being clinically tested. Complementary pre-interventional screening approaches (e.g. electrophysiology, neuroimaging and molecular inflammatory profiling) have been recommended in order to identify symptom-tailored predictive measures for diagnosis and treatment.

Keywords

Electroconvulsive therapy Transcranial direct current/alternating current stimulation Repetitive transcranial magnetic stimulation Stereotactic, deep brain modulation Personalized, predictive brain stimulation 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

T.M. Kinfe und R. Hurlemann geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Deutsche Gesellschaft für Psychiatrie, Psychotherapie und Nervenheilkunde DGPPN (Hrsg) (2005) S3 Praxisleitlinien in Psychiatrie und Psychotherapie. Band 1 – Behandlungsleitlinien Schizophrenie. Steinkopff-Verlag, Darmstadt (November (Vermerk: Gültigkeit abgelaufen, wird z. Zt. überprüft; 1.Quartal 2018 Neufassung geplant))Google Scholar
  2. 2.
    Hasan A, Wobrock T, Palm U, Strube W, Padberg F, Falkai P, Fallgatter A, Plewnia C (2015) Non-invasive brain stimulation for the treatment of schizophrenic patients. Nervenarzt 86(12):1481–1491CrossRefGoogle Scholar
  3. 3.
    Sanghani SN, Petrides G, Kellner CH (2018) Electroconvulsive therapy (ECT) in schizophrenia: a review of recent literature. Curr Opin Psychiatry.  https://doi.org/10.1097/YCO.0000000000000418 (Epub ahead of print)CrossRefPubMedGoogle Scholar
  4. 4.
    Bansod A, Sonavane SS, Shah NB, DeSousa AA, Andrade C (2018) A randomized, nonblind, naturalistic comparison of efficacy and cognitive outcome with right unilateral, bifrontal, and bitemporal electroconvulsive therapy in schizophrenia. J Ect 34(1):26–30PubMedGoogle Scholar
  5. 5.
    Dalkiran M, Tasdemir A, Salihoglu T et al (2017) The change in facial emotion recognition ability in inpatients with treatment resistant schizophrenia after Electroconvulsive therapy. Psychiatr Q 88:535–543CrossRefGoogle Scholar
  6. 6.
    Ahmed S, Khan AM, Mekala HM, Venigalla H, Etman A, Esang M, Qureshi M (2017) Combined use of electroconvulsive therapy and antipsychotics (both clozapine and nonclozapine) in treatment resistant schizophrenia: a comparative meta-analysis. Heliyon 3(11):e429CrossRefGoogle Scholar
  7. 7.
    Youssef NA, Sidhom E (2017) Feasibility, safety, and preliminary efficacy of low amplitude seizure therapy (LAP-ST): a proof of concept clinical trial in man. J Affect Disord 222:1–6CrossRefGoogle Scholar
  8. 8.
    Palm U, Strube W, Bunse T, Bauer I, Dunkel G, Hasan A, Pfeiffer A, Padberg F (2015) Transkranielle Gleichstromstimulation in der Psychiatrie. Nervenheilkunde 12:949–1068Google Scholar
  9. 9.
    Palm U, Keeser D, Hasan A, Kupka MJ, Blautzik J, Sarubin N, Kaymakanova F, Unger I, Falkai P, Meindl T, Ertl-Wagner B, Padberg F (2016) Prefrontal Transcranial direct current stimulation for treatment of schizophrenia with predominant negative symptoms: a double-blind, sham-controlled proof-of-concept study. Schizophr Bull 42(5):1253–1261CrossRefGoogle Scholar
  10. 10.
    Lefaucheur JP, Antal A, Ayache SS, Benninger DH, Brunelin J, Cogiamanian F, Cotelli M, De Ridder D, Ferrucci R, Langguth B, Marangolo P, Mylius V, Nitsche MA, Padberg F, Palm U, Poulet E, Priori A, Rossi S, Schecklmann M, Vanneste S, Ziemann U, Garcia-Larrea L, Paulus W (2016) Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clin Neurophysiol 128(1):56–92CrossRefGoogle Scholar
  11. 11.
    Kennedy NI, Lee WH, Frangou S (2018) Efficacy of non-invasive brain stimulation on the symptom dimensions of schizophrenia: a meta-analysis of randomized controlled trials. Eur Psychiatry 49:69–77CrossRefGoogle Scholar
  12. 12.
    Gomes JS, Trevizol AP, Ducos DV, Gadelha A, Ortiz BB, Fonseca AO, Akiba HT, Azevedo CC, Guimaraes LSP, Shiozawa P, Cordeiro Q, Lacerda A, Dias AM (2018) Effects of transcranial direct current stimulation on working memory and negative symptoms in schizophrenia: a phase II randomized sham-controlled trial. Schizophr Res Cogn 20(12):20–28CrossRefGoogle Scholar
  13. 13.
    Mellin JM, Alagapan S, Lustenberger C, Lugo CE, Alexander ML, Gilmore JH, Jarskog LF, Fröhlich F (2018) Randomized trial of transcranial alternating current stimulation for treatment of auditory hallucinations in schizophrenia. Eur Psychiatry 10(51):25–33CrossRefGoogle Scholar
  14. 14.
    Kreuzer PM, Höppner J, Kammer T, Schönfeldt-Lecuona C, Padberg F, Bajbouji M, Zwanzger P, Plewnia C, Fallgatter A, Landgrebe M, Cordes J, Wobrock T, Hasan A, Hajak G, Schecklmann M, Lefaucheur J‑P, Langguth B (2015) rTMS in der Therapie psychiatrischer Erkrankungen: Grundlagen und Methodik. Nervenheilkunde 34:965–975CrossRefGoogle Scholar
  15. 15.
    Hansbauer M, Wobrock T, Kunze B, Langguth B, Landgrebe M, Eichhammer P, Frank E, Cordes J, Wölwer W, Winterer G, Gaebel W, Hajak G, Ohmann C, Verde PE, Rietschel M, Ahmed R, Honer WG, Malchow B, Strube W, Schneider-Axmann T, Falkai P, Hasan A (2018) Efficacy of high-frequency repetitive transcranial magnetic stimulation on PANSS factors in schizophrenia with predominant negative symptoms—results from an exploratory re-analysis. Psychiatry Res 263:22–29CrossRefGoogle Scholar
  16. 16.
    Dougall N, Maayan N, Soares-Weiser K, McDermott LM, McIntosh A (2015) Transcranial magnet stimulation (TMS) for schizophrenia. Cochrane Database Syst Rev 20(8).  https://doi.org/10.1002/14651858 CrossRefPubMedGoogle Scholar
  17. 17.
    Tang VM, Blumberger DM, McClintock SM, Kaster TS, Rajji TK, Downar J, Fitzgerald PB, Daskalakis ZJ (2018) Magnetic seizure therapy in treatment-resistant schizophrenia: a pilot study. Front Psychiatry 8:310.  https://doi.org/10.3389/fpsyt.2017.00310 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Manjila S, Rengachary S, Xavier AR, Parker B, Guthikonda M (2008) Modern psychosurgery before Egas Moniz: a tribute to Gottlieb Burckhardt. Neurosurg Focus 25(1):E9CrossRefGoogle Scholar
  19. 19.
    Freeman W (1948) Transorbital leucotomy. Lancet 2:371–373CrossRefGoogle Scholar
  20. 20.
    O’Neal CM, Baker CM, Glenn CA, Conner AK, Sughrue ME (2017) Dr. Robert G. Heath: a controversial figure in the history of deep brain stimulation. Neurosurg Focus 43(3):E12CrossRefGoogle Scholar
  21. 21.
    Bourdillon P, Apra C, Lévêque M, Vinckier F (2017) Neuroplasticity and the brain connectome: what can Jean Talairach’s reflections bring to modern psychosurgery? Neurosurg Focus 43(3):E11CrossRefGoogle Scholar
  22. 22.
    Gault JM, Davis R, Cascella NG, Saks ER, Corripio-Collado I, Anderson WS, Olincy A, Thompson JA, Pomarol-Clotet E, Sawa A, Daskalakis Z, Lipsman N, Abosch A (2017) Approaches to neuromodulation for schizophrenia. J Neurol Neurosurg Psychiatry 89:777–787CrossRefGoogle Scholar
  23. 23.
    Magdaleno-Madrigal VM, Contreras-Murillo G, Camacho-Abrego I, Negrete-Díaz JV, Valdés-Cruz A, Fernández-Mas R, Almazán-Alvarado S, Flores G (2017) Short-term deep brain stimulation of the thalamic reticular nucleus modifies aberrant oscillatory activity in a neurodevelopment model of schizophrenia. Neuroscience 357:99–109CrossRefGoogle Scholar
  24. 24.
    Hadar R, Bikovski L, Soto-Montenegro ML, Schimke J, Maier P, Ewing S, Voget M, Wieske F, Götz T, Desco M, Hamani C, Pascau J, Weiner I, Winter C (2017) Early neuromodulation prevents the development of brain and behavioral abnormalities in a rodent model of schizophrenia. Mol Psychiatry.  https://doi.org/10.1038/mp.2017.52 (Epub ahead of print)CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Taylor JJ, Krystal JH, D’Souza DC, Gerrard JL, Corlett PR (2017) Targeted neural network interventions for auditory hallucinations: can TMS inform DBS? Schizophr Res.  https://doi.org/10.1016/j.schres.2017.09.020 (Epub ahead of print)CrossRefPubMedGoogle Scholar
  26. 26.
    Müller UJ, Bogerts B, Voges J, Galazky I, Kohl S, Heinze HJ, Kuhn J, Steiner J (2014) Deep brain stimulation in psychiatry: ethical aspects. Psychiat Prax 41(Suppl.1):S38–S43Google Scholar
  27. 27.
    Unterrainer M, Oduncu FS (2015) The ethics of deep brain stimulation (DBS). Med Health Care Philos 18:475–485CrossRefGoogle Scholar
  28. 28.
    Stier M, Schöne-Seifert B, Rüther M, Muders S (2014) The philosophy of psychiatry and biologism. Front Psychol 5:1032PubMedPubMedCentralGoogle Scholar
  29. 29.
    Meng Y, Suppiah S, Mithani K, Solomon B, Schwartz ML, Lipsman N (2017) Current and emerging brain applications of MR-guided focused ultrasound. J Ther Ultrasound 5:26CrossRefGoogle Scholar
  30. 30.
    Cimpianu CL, Strube W, Falkai P, Palm U, Hasan A (2017) Vagus nerve stimulation in psychiatry: a systematic review of the available evidence. J Neural Transm 124:145–158CrossRefGoogle Scholar
  31. 31.
    Palm U, Kumpf U, Behler N, Wulf L, Kirsch B, Wörsching J, Keeser D, Hasan A, Padberg F (2017) Home use, remotely supervised, and remotely controlled transcranial direct current stimulation: a systematic review of the available evidence. Neuromodulation.  https://doi.org/10.1111/ner.12686 (Epub ahead of print)CrossRefPubMedGoogle Scholar
  32. 32.
    Delbeke J, Hoffman L, Mols K, Braeken D, Prodanov D (2017) And then there was light: perspectives of optogenetics for deep brain stimulation and neuromodulation. Front Neurosci 11:663CrossRefGoogle Scholar
  33. 33.
    Cho KK, Sohal VS (2014) Optogenetic approaches for investigating neural pathways implicated in schizophrenia and related disorders. Human Mol Gen 23(1).  https://doi.org/10.1093/hmg/ddu225 CrossRefGoogle Scholar
  34. 34.
    Hasan A, Wobrock T, Guse B, Langguth B, Landgrebe M, Eichhammer P, Frank E, Cordes J, Wölwer W, Musso F, Winterer G, Gaebel W, Hajak G, Ohmann C, Verde PE, Rietschel M, Ahmed R, Honer WG, Dechent P, Malchow B, Castro MFU, Dwyer D, Cabral C, Kreuzer PM, Poeppl TB, Schneider-Axmann T, Falkai P, Koutsouleris N (2017) Structural brain changes are associated with response of negative symptoms to prefrontal repetitive transcranial magnetic stimulation in patients with schizophrenia. Mol Psychiatry 22(6):857–864CrossRefGoogle Scholar
  35. 35.
    Koutsouleris N, Wobrock T, Guse B, Langguth B, Landgrebe M, Eichhammer P, Frank E, Cordes J, Wölwer W, Musso F, Winterer G, Gaebel W, Hajak G, Ohmann C, Verde PE, Rietschel M, Ahmed R, Honer WG, Dwyer D, Ghaseminejad F, Dechent P, Malchow B, Kreuzer PM, Poeppl TB, Schneider-Axmann T, Falkai P, Hasan A (2017) Predicting response to repetitive transcranial magnetic stimulation in patients with schizophrenia using structural magnetic resonance imaging: a multisite machine learning analysis. Schizophr Bull.  https://doi.org/10.1093/schbul/sbx114 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Padberg F, Brem AK, Palm U, Pogarell O, Hasan A, Brunelin J, Baeken C, Poulet E, Langguth B, Keeser D (2017) Discovering the individual brain: brain stimulation in psychiatry: Editorial I to the supplement from the 2nd European conference on brain stimulation in psychiatry. Eur Arch Psychiatry Clin Neurosci 267(Suppl 2):109–112CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Abteilung für Medizinische Psychologie, Klinik und Poliklinik für Psychiatrie und PsychotherapieUniversitätsklinikum BonnBonnDeutschland

Personalised recommendations