Advertisement

Kongenitale myasthene Syndrome im Erwachsenenalter

Diagnostisch herausfordernd, selten, aber behandelbar
  • G. Wunderlich
  • A. Abicht
  • A. Brunn
  • H.-S. Daimagüler
  • M. Schroeter
  • G. R. Fink
  • H. C. Lehmann
  • S. Cirak
Übersichten
  • 95 Downloads

Zusammenfassung

Kongenitale myasthene Syndrome (CMS) stellen eine heterogene Gruppe von Erkrankungen dar, die mit einem breiten Spektrum von Phänotypen einhergehen, aber alle auf vererbte Defekte an der motorischen Endplatte zurückzuführen sind. Auch wenn einige Patienten bisher (noch) nicht genetisch charakterisiert werden können, hat die zunehmende Identifizierung ursächlicher Gene in den letzten Jahren neue Einblicke in die Funktionalität von Strukturproteinen der neuromuskulären Endplatte ermöglicht. Die Erstmanifestation der meisten CMS geschieht im Neugeborenen- bzw. Kleinkindesalter. Im Falle einer späteren Manifestation, oder wenn die Diagnose (z. B. aufgrund einer atypischen Manifestation) im Kleinkindesalter nicht gestellt wurde, ist die Diagnosestellung im Erwachsenenalter oft schwierig. Die Definition der zugrunde liegenden Mutation hat jedoch unmittelbare Therapierelevanz. In dieser Übersicht sollen ausgehend von charakteristischen Patientenbeispielen wesentliche klinische und zusatzdiagnostische Befunde verschiedener CMS-Subtypen dargestellt werden. Es wird insbesondere auch auf die differenzialdiagnostische Abgrenzung des CMS-Erkrankungsspektrums von Muskelerkrankungen im engeren Sinn, insbesondere von Muskeldystrophien, eingegangen. Zur Veranschaulichung geschieht dies einerseits mithilfe charakteristischer Patientenbeispiele und andererseits der Darstellung der wesentlichen klinischen und zusatzdiagnostischen Befunde verschiedener CMS-Subtypen sowie spezieller diagnostischer Hinweise.

Schlüsselwörter

Klinische Symptome Myasthenia gravis Neuromuskuläre Endplatte Neurophysiologie Muskeldystrophie 

Congenital myasthenic syndromes in adulthood

Challenging, rare but treatable

Abstract

The congenital myasthenic syndromes (CMS) represent a heterogeneous group of diseases with a broad spectrum of phenotypes. The common characteristic is an inherited genetic defect of the neuromuscular junction. Although in some patients the specific gene defect remains to be detected, the increasing identification of causative genes in recent years has already provided unique insights into the functionality of structural proteins at the neuromuscular junction. Neonatal and early childhood onset is observed in most CMS subtypes; however, late onset in adolescence or adulthood also occurs and establishing the diagnosis at these stages imposes particular challenges. To enable appropriate therapeutic interventions for an at least in principle treatable condition, determining the genetic cause is warranted. In this overview, the critical clinical and diagnostic features of the different CMS subtypes are presented and illustrated using typical cases. Furthermore, specific diagnostic clues are outlined. Finally, the overlap between CMS and muscular dystrophies is discussed. Illustrating characteristic patient examples, the essential clinical and additional diagnostic findings of various CMS subtypes and special diagnostic indications are presented.

Keywords

Clinical symptoms Myasthenia gravis Neuromuscular junction Neurophysiology Muscular dystrophy 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

G. Wunderlich, A. Abicht, A. Brunn, H.-S. Daimagüler, M. Schroeter, G. R. Fink, H. C. Lehmann und S. Cirak geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren. Für Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts, über die Patienten zu identifizieren sind, liegt von ihnen und/oder ihren gesetzlichen Vertretern eine schriftliche Einwilligung vor.

Literatur

  1. 1.
    McMacken G, Abicht A, Evangelista T et al (2017) The increasing genetic and phenotypical diversity of congenital myasthenic syndromes. Neuropediatrics 48:294–308CrossRefPubMedGoogle Scholar
  2. 2.
    Beeson D, Hantaï D, Lochmüller H et al (2005) 126th International Workshop: congenital myasthenic syndromes, 24–26 September 2004, Naarden, the Netherlands. Neuromuscul Disord 15:498–512CrossRefPubMedGoogle Scholar
  3. 3.
    Müller JS, Mihaylova V, Abicht A et al (2007) Congenital myasthenic syndromes: spotlight on genetic defects of neuromuscular transmission. Expert Rev Mol Med 9:1–20CrossRefPubMedGoogle Scholar
  4. 4.
    Engel AG, Shen XM, Selcen D et al (2015) Congenital myasthenic syndromes: pathogenesis, diagnosis, and treatment. Lancet Neurol 14:420–434CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wood SJ, Slater CR (2001) Safety factor at the neuromuscular junction. Prog Neurobiol 64:393–429CrossRefPubMedGoogle Scholar
  6. 6.
    Slater CR (2008) Reliability of neuromuscular transmission and how it is maintained. Handb Clin Neurol 91:27–101CrossRefPubMedGoogle Scholar
  7. 7.
    McMahan UJ (1990) The agrin hypothesis. Cold Spring Harb Symp Quant Biol 55:407–418CrossRefPubMedGoogle Scholar
  8. 8.
    Weatherbee SD, Anderson KV, Niswander LA (2006) LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction. Development 133:4993–5000CrossRefPubMedGoogle Scholar
  9. 9.
    Hopf C, Hoch W (1998) Dimerization of the muscle-specific kinase induces tyrosine phosphorylation of acetylcholine receptors and their aggregation on the surface of myotubes. J Biol Chem 273:6467–6473CrossRefPubMedGoogle Scholar
  10. 10.
    Sanes JR, Lichtman JW (2001) Induction, assembly, maturation and maintenance of a postsynaptic apparatus. Nat Rev Neurosci 2:791–805CrossRefPubMedGoogle Scholar
  11. 11.
    Sudhof TC (2004) The synaptic vesicle cycle. Annu Rev Neurosci 27:509–547CrossRefPubMedGoogle Scholar
  12. 12.
    Parsons SM, Bahr BA, Gracz LM et al (1987) Acetylcholine transport: fundamental properties and effects of pharmacologic agents. Ann N Y Acad Sci 493:220–233CrossRefPubMedGoogle Scholar
  13. 13.
    Varoqui H, Meunier FM, Meunier FA et al (1996) Expression of the vesicular acetylcholine transporter in mammalian cells. Prog Brain Res 109:83–95CrossRefPubMedGoogle Scholar
  14. 14.
    Bazalakova MH, Blakely RD (2006) The high-affinity choline transporter: a critical protein for sustaining cholinergic signaling as revealed in studies of genetically altered mice. Handb Exp Pharmacol 2006(175):525–544CrossRefGoogle Scholar
  15. 15.
    Tintignac LA, Brenner HR, Rüegg MA (2015) Mechanisms regulating neuromuscular junction development and function and causes of muscle wasting. Physiol Rev 95:809–852CrossRefPubMedGoogle Scholar
  16. 16.
    Masuda A, Shen XM, Ito M et al (2008) hnRNP H enhances skipping of a nonfunctional exon P3A in CHRNA1 and a mutation disrupting its binding causes congenital myasthenic syndrome. Hum Mol Genet 17:4022–4035CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Carss KJ, Stevens E, Foley AR et al (2013) Mutations in GDP-mannose pyrophosphorylase B cause congenital and limb-girdle muscular dystrophies associated with hypoglycosylation of α‑dystroglycan. Am J Hum Genet 93:29–41CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Belaya K, Rodríguez CPM, Liu WW et al (2015) Mutations in GMPPB cause congenital myasthenic syndrome and bridge myasthenic disorders with dystroglycanopathies. Brain 138:2493–2504CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Abicht A, Stucka R, Karcagi V et al (1999) A common mutation (epsilon1267delG) in congenital myasthenic patients of Gypsy ethnic origin. Neurology 53:1564–1569CrossRefPubMedGoogle Scholar
  20. 20.
    Evangelista T, Hanna M, Lochmüller H (2015) Congenital myasthenic syndromes with predominant limb girdle weakness. J Neuromuscul Dis 2:S21–S29CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Engel AG, Lambert EH, Mulder DM et al (1982) A newly recognized congenital myasthenic syndrome attributed to a prolonged open time of the acetylcholine-induced ion channel. Ann Neurol 11:553–569CrossRefPubMedGoogle Scholar
  22. 22.
    Rodríguez Cruz PM, Belaya K, Basiri K et al (2016) Clinical features of the myasthenic syndrome arising from mutations in GMPPB. J Neurol Neurosurg Psychiatr 87:802–809CrossRefGoogle Scholar
  23. 23.
    Finlayson S, Morrow JM, Rodriguez CPM et al (2016) Muscle magnetic resonance imaging in congenital myasthenic syndromes. Muscle Nerve 54:211–219CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Selcen D, Milone M, Shen XM et al (2008) Dok-7 myasthenia: phenotypic and molecular genetic studies in 16 patients. Ann Neurol 64:71–87CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hutchinson DO, Walls TJ, Nakano S et al (1993) Congenital endplate acetylcholinesterase deficiency. Brain 116(Pt 3):633–653CrossRefPubMedGoogle Scholar
  26. 26.
    Belaya K, Finlayson S, Slater CR et al (2012) Mutations in DPAGT1 cause a limb-girdle congenital myasthenic syndrome with tubular aggregates. Am J Hum Genet 91:193–201CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Guergueltcheva V, Müller JS, Dusl M et al (2012) Congenital myasthenic syndrome with tubular aggregates caused by GFPT1 mutations. J Neurol 259:838–850CrossRefPubMedGoogle Scholar
  28. 28.
    Whittaker RG, Herrmann DN, Bansagi B et al (2015) Electrophysiologic features of SYT2 mutations causing a treatable neuromuscular syndrome. Neurology 85:1964–1971CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Engel AG, Selcen D, Shen XM et al (2016) Loss of MUNC13-1 function causes microcephaly, cortical hyperexcitability, and fatal myasthenia. Neurol Genet 2:e105CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Shen XM, Scola RH, Lorenzoni PJ et al (2017) Novel synaptobrevin-1 mutation causes fatal congenital myasthenic syndrome. Ann Clin Transl Neurol 4:130–138CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Eaton LM, Lambert EH (1957) Electromyography and electric stimulation of nerves in diseases of motor unit; observations on myasthenic syndrome associated with malignant tumors. J Am Med Assoc 163:1117–1124CrossRefPubMedGoogle Scholar
  32. 32.
    Byring RF, Pihko H, Tsujino A et al (2002) Congenital myasthenic syndrome associated with episodic apnea and sudden infant death. Neuromuscul Disord 12:548–553CrossRefPubMedGoogle Scholar
  33. 33.
    Mora M, Lambert EH, Engel AG (1987) Synaptic vesicle abnormality in familial infantile myasthenia. Neurology 37:206–214CrossRefPubMedGoogle Scholar
  34. 34.
    van Dijk JG, Lammers GJ, Wintzen AR et al (1996) Repetitive CMAPs: mechanisms of neural and synaptic genesis. Muscle Nerve 19:1127–1133CrossRefPubMedGoogle Scholar
  35. 35.
    Bromberg MB, Scott DM (1994) Single fiber EMG reference values: reformatted in tabular form. AD HOC Committee of the AAEM Single Fiber Special Interest Group. Muscle Nerve 17:820–821CrossRefPubMedGoogle Scholar
  36. 36.
    Gomez CM, Maselli RA, Vohra BP et al (2002) Novel delta subunit mutation in slow-channel syndrome causes severe weakness by novel mechanisms. Ann Neurol 51:102–112CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Shen XM, Okuno T, Milone M et al (2016) Mutations causing slow-channel myasthenia reveal that a valine ring in the channel pore of muscle AChR is optimized for stabilizing channel gating. Hum Mutat 37:1051–1059CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Sine SM (2012) End-plate acetylcholine receptor: structure, mechanism, pharmacology, and disease. Physiol Rev 92:1189–1234CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Webster R, Liu WW, Chaouch A et al (2014) Fast-channel congenital myasthenic syndrome with a novel acetylcholine receptor mutation at the α‑ε subunit interface. Neuromuscul Disord 24:143–147CrossRefPubMedGoogle Scholar
  40. 40.
    Chaouch A, Müller JS, Guergueltcheva V et al (2012) A retrospective clinical study of the treatment of slow-channel congenital myasthenic syndrome. J Neurol 259:474–481CrossRefPubMedGoogle Scholar
  41. 41.
    Mihaylova V, Müller JS, Vilchez JJ et al (2008) Clinical and molecular genetic findings in COLQ-mutant congenital myasthenic syndromes. Brain 131:747–759CrossRefPubMedGoogle Scholar
  42. 42.
    Shapira YA, Sadeh ME, Bergtraum MP et al (2002) Three novel COLQ mutations and variation of phenotypic expressivity due to G240X. Neurology 58:603–609CrossRefPubMedGoogle Scholar
  43. 43.
    Yamanashi Y, Higuch O, Beeson D (2008) Dok-7/MuSK signaling and a congenital myasthenic syndrome. Acta Myol 27:25–29PubMedPubMedCentralGoogle Scholar
  44. 44.
    Binks S, Vincent A, Palace J (2016) Myasthenia gravis: a clinical-immunological update. J Neurol 263:826–834CrossRefPubMedGoogle Scholar
  45. 45.
    Schara U, Lochmüller H (2008) Therapeutic strategies in congenital myasthenic syndromes. Neurotherapeutics 5:542–547CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kirsch GE, Narahashi T (1978) 3,4-diaminopyridine. A potent new potassium channel blocker. Biophys J 22:507–512CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Lindquist S, Stangel M (2011) Update on treatment options for Lambert-Eaton myasthenic syndrome: focus on use of amifampridine. Neuropsychiatr Dis Treat 7:341–349PubMedPubMedCentralGoogle Scholar
  48. 48.
    Slater CR, Fawcett PR, Walls TJ et al (2006) Pre- and post-synaptic abnormalities associated with impaired neuromuscular transmission in a group of patients with ‚limb-girdle myasthenia‘. Brain 129:2061–2076CrossRefPubMedGoogle Scholar
  49. 49.
    Fukudome T, Ohno K, Brengman JM et al (1998) Quinidine normalizes the open duration of slow-channel mutants of the acetylcholine receptor. Neuroreport 9:1907–1911CrossRefPubMedGoogle Scholar
  50. 50.
    Harper CM, Fukodome T, Engel AG (2003) Treatment of slow-channel congenital myasthenic syndrome with fluoxetine. Neurology 60:1710–1713CrossRefPubMedGoogle Scholar
  51. 51.
    Engel AG (2007) The therapy of congenital myasthenic syndromes. Neurotherapeutics 4:252–257CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Harper CM, Engel AG (1998) Quinidine sulfate therapy for the slow-channel congenital myasthenic syndrome. Ann Neurol 43:480–484CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • G. Wunderlich
    • 1
    • 6
  • A. Abicht
    • 2
    • 8
  • A. Brunn
    • 3
    • 6
  • H.-S. Daimagüler
    • 4
    • 5
  • M. Schroeter
    • 1
  • G. R. Fink
    • 1
    • 7
  • H. C. Lehmann
    • 1
    • 5
    • 6
  • S. Cirak
    • 4
    • 5
    • 6
  1. 1.Klinik und Poliklinik für NeurologieUniversitätsklinikum KölnKölnDeutschland
  2. 2.MGZ-Medizinisch Genetisches ZentrumMünchenDeutschland
  3. 3.Institut für NeuropathologieUniversitätsklinikum KölnKölnDeutschland
  4. 4.Klinik für Kinderheilkunde und JugendmedizinUniversitätsklinikum KölnKölnDeutschland
  5. 5.Zentrum für Molekulare MedizinUniversität KölnKölnDeutschland
  6. 6.Zentrum für Seltene ErkrankungenUniversitätsklinikum KölnKölnDeutschland
  7. 7.Kognitive Neurowissenschaften, Institut für Neurowissenschaften und Medizin (INM-3)Forschungszentrum JülichJülichDeutschland
  8. 8.Friedrich-Baur-InstitutKlinikum der Universität MünchenMünchenDeutschland

Personalised recommendations