Advertisement

Der Nervenarzt

, Volume 89, Issue 3, pp 290–299 | Cite as

Pharmakogenetik in der Psychiatrie: eine Standortbestimmung

  • D. J. MüllerEmail author
  • E. J. Brandl
  • F. Degenhardt
  • K. Domschke
  • H. Grabe
  • O. Gruber
  • J. Hebebrand
  • W. Maier
  • A. Menke
  • M. Riemenschneider
  • M. Rietschel
  • D. Rujescu
  • T. G. Schulze
  • L. Tebartz van Elst
  • O. Tüscher
  • J. Deckert
  • das DGPPN Referat Neurobiologie und Genetik
Übersichten

Zusammenfassung

In der vorliegenden Arbeit aus dem Referat Neurobiologie und Genetik der Deutschen Gesellschaft für Psychiatrie und Psychotherapie, Psychosomatik und Nervenheilkunde (DGPPN) wird der Stand der Literatur zur Bedeutung pharmakogenetischer Befunde zur Pharmakokinetik und Pharmakodynamik von Antidepressiva, Antipsychotika und Lithium zusammengefasst. Besonders hingewiesen wird auf die Arbeit internationaler Expertengruppen und Regulierungsbehörden. In Deutschland liegt eine erste Stellungnahme der Gendiagnostikkommission des Gesundheitsministeriums am Robert-Koch-Institut vor. Die DGPPN hat im Anhörungsverfahren die Empfehlung zur CYP2D6-Bestimmung vor dem Einsatz trizyklischer Antidepressiva unterstützt und empfiehlt darüber hinaus bei asiatischen Patienten vor einem Einsatz von Carbamazepin die Bestimmung des HLA-B*1502-Genotyps. Haupthindernis für den flächendeckenden Einsatz pharmakogenetischer Bestimmungen für eine sicherere und effektivere Pharmakotherapie psychischer Erkrankungen ist das Fehlen prospektiver Studien zu einzelnen und vor allem zu der Kombination genetischer Varianten. Hier sind Psychiater, Humangenetiker und Drittmittelgeber im Interesse der Patienten gefordert.

Schlüsselwörter

Pharmokinetik Personalisierte Medizin Antidepressiva Antipsychotika Lithium 

Pharmacogenetics in psychiatry: state of the art

Abstract

In this article, the current literature on pharmacogenetics of antidepressants, antipsychotics and lithium are summarized by the section of Neurobiology and Genetics of the German Society of Psychiatry, Psychotherapy and Neurology (DGPPN). The publications of international expert groups and regulatory authorities are reviewed and discussed. In Germany, a statement on pharmacogenetics was also made by the gene diagnostics committee of the Ministry of Health. The DGPPN supports two recommendations: 1) to perform CYP2D6 genetic testing prior to prescription of tricyclic antidepressants and 2) to determine the HLA-B*1502 genotype in patients of Asian origin before using carbamazepine. The main obstacle for a broad application of pharmacogenetic tests in psychiatry remains the lack of large prospective studies, for both single gene-drug pair and cobinatorial pharmacogenetic tests, to evaluate the benefits of genetic testing. Psychiatrists, geneticists and funding agencies are encouraged to increase their efforts for the future benefit of psychiatric patients.

Keywords

Pharmacokinetics Personalised medicine Antidepressants Antipsychotics Lithium 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

D.J. Müller, E.J. Brandl, F. Degenhardt, K. Domschke, H. Grabe, O. Gruber, J. Hebebrand, W. Maier, A. Menke, M. Riemenschneider, M. Rietschel, D. Rujescu, T.G. Schulze, L. Tebartz van Elst, O. Tüscher und J. Deckert geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Aberg K, Adkins DE, Liu Y et al (2012) Genome-wide association study of antipsychotic-induced QTc interval prolongation. Pharmacogenomics J 12:165–172CrossRefPubMedGoogle Scholar
  2. 2.
    Adkins DE, Aberg K, Mcclay JL et al (2011) Genomewide pharmacogenomic study of metabolic side effects to antipsychotic drugs. Mol Psychiatry 16:321–332CrossRefPubMedGoogle Scholar
  3. 3.
    Adkins DE, Clark SL, Aberg K et al (2012) Genome-wide pharmacogenomic study of citalopram-induced side effects in STAR*D. Transl Psychiatry 2:e129CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Alda M (2015) Lithium in the treatment of bipolar disorder: pharmacology and pharmacogenetics. Mol Psychiatry 20:661–670CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Altar CA, Carhart J, Allen JD et al (2015) Clinical utility of combinatorial pharmacogenomics-guided antidepressant therapy: evidence from three clinical studies. Mol Neuropsychiatry 1:145–155CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Altar CA, Hornberger J, Shewade A et al (2013) Clinical validity of cytochrome P450 metabolism and serotonin gene variants in psychiatric pharmacotherapy. Int Rev Psychiatry 25:509–533CrossRefPubMedGoogle Scholar
  7. 7.
    Robert Koch-Institut (2017) Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 60:472–475CrossRefGoogle Scholar
  8. 8.
    Arranz MJ, Munro J, Sham P et al (1998) Meta-analysis of studies on genetic variation in 5‑HT2A receptors and clozapine response. Schizophr Res 32:93–99CrossRefPubMedGoogle Scholar
  9. 9.
    Biernacka JM, Sangkuhl K, Jenkins G et al (2015) The International SSRI Pharmacogenomics Consortium (ISPC): a genome-wide association study of antidepressant treatment response. Transl Psychiatry 5:e553CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Binder EB (2009) The role of FKBP5, a co-chaperone of the glucocorticoid receptor in the pathogenesis and therapy of affective and anxiety disorders. Psychoneuroendocrinology 34(Suppl 1):S186–S195CrossRefPubMedGoogle Scholar
  11. 11.
    Binder EB, Salyakina D, Lichtner P et al (2004) Polymorphisms in FKBP5 are associated with increased recurrence of depressive episodes and rapid response to antidepressant treatment. Nat Genet 36:1319–1325CrossRefPubMedGoogle Scholar
  12. 12.
    Brandl EJ, Frydrychowicz C, Tiwari AK et al (2012) Association study of polymorphisms in leptin and leptin receptor genes with antipsychotic-induced body weight gain. Progress in neuro-psychopharmacology. Biol Psychiatry 38:134–141Google Scholar
  13. 13.
    Brandl EJ, Kennedy JL, Muller DJ (2014) Pharmacogenetics of antipsychotics. Can J Psychiatry 59:76–88CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Brandl EJ, Tiwari AK, Zai CC et al (2016) Genome-wide association study on antipsychotic-induced weight gain in the CATIE sample. Pharmacogenomics J 16(4):352–356.  https://doi.org/10.1038/tpj.2015.59 CrossRefPubMedGoogle Scholar
  15. 15.
    Breitenstein B, Bruckl TM, Ising M et al (2015) ABCB1 gene variants and antidepressant treatment outcome: a meta-analysis. Am J Med Genet B Neuropsychiatr Genet 168B:274–283CrossRefPubMedGoogle Scholar
  16. 16.
    Bschor T, Baethge C, Hiemke C et al (2017) Genetic tests for controlling treatment with antidepressants. Nervenarzt 88:495–499CrossRefPubMedGoogle Scholar
  17. 17.
    Can A, Schulze TG, Gould TD (2014) Molecular actions and clinical pharmacogenetics of lithium therapy. Pharmacol Biochem Behav 123:3–16CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Caudle KE, Klein TE, Hoffman JM et al (2014) Incorporation of pharmacogenomics into routine clinical practice: the Clinical Pharmacogenetics Implementation Consortium (CPIC) guideline development process. Curr Drug Metab 15:209–217CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Chen CH, Lee CS, Lee MT et al (2014) Variant GADL1 and response to lithium therapy in bipolar I disorder. N Engl J Med 370:119–128CrossRefPubMedGoogle Scholar
  20. 20.
    Chowdhury NI, Remington G, Kennedy JL (2011) Genetics of antipsychotic-induced side effects and agranulocytosis. Curr Psychiatry Rep 13:156–165CrossRefPubMedGoogle Scholar
  21. 21.
    Clark SL, Souza RP, Adkins DE et al (2013) Genome-wide association study of patient-rated and clinician-rated global impression of severity during antipsychotic treatment. Pharmacogenet Genomics 23:69–77CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Colle R, Deflesselle E, Martin S et al (2015) BDNF/TRKB/P75NTR polymorphisms and their consequences on antidepressant efficacy in depressed patients. Pharmacogenomics 16:997–1013CrossRefPubMedGoogle Scholar
  23. 23.
    Cordon-Cardo C, O’brien JP, Casals D et al (1989) Multidrug-resistance gene (P-glycoprotein) is expressed by endothelial cells at blood-brain barrier sites. Proc Natl Acad Sci USA 86:695–698CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Czerwensky F, Leucht S, Steimer W (2013) MC4R rs489693: a clinical risk factor for second generation antipsychotic-related weight gain? Int J Neuropsychopharmacol 16:2103–2109CrossRefPubMedGoogle Scholar
  25. 25.
    De Luca V, Mueller DJ, De Bartolomeis A et al (2007) Association of the HTR2C gene and antipsychotic induced weight gain: a meta-analysis. Int J Neuropsychopharmacol 10:697–704PubMedGoogle Scholar
  26. 26.
    Deneer VH, Van Schaik RH (2013) Evidence based drug dosing and pharmacotherapeutic recommendations per genotype. Methods Mol Biol 1015:345–354CrossRefPubMedGoogle Scholar
  27. 27.
    Drago A, Giegling I, Schafer M et al (2014) Genome-wide association study supports the role of the immunological system and of the neurodevelopmental processes in response to haloperidol treatment. Pharmacogenet Genomics 24:314–319CrossRefPubMedGoogle Scholar
  28. 28.
    Eckermann G, Brandl EJ (2017) Ethnische Aspekte in der Psychopharmakologie. In: Graef-Calliess I, Schouler-Ocak M (Hrsg) Migration und Transkulturalität. Schattauer, StuttgartGoogle Scholar
  29. 29.
    Fabbri C, Serretti A (2015) Pharmacogenetics of major depressive disorder: top genes and pathways toward clinical applications. Curr Psychiatry Rep 17:50CrossRefPubMedGoogle Scholar
  30. 30.
    Fabbri C, Di Girolamo G, Serretti A (2013) Pharmacogenetics of antidepressant drugs: an update after almost 20 years of research. Am J Med Genet B Neuropsychiatr Genet 162B:487–520CrossRefPubMedGoogle Scholar
  31. 31.
    Fabbri C, Hosak L, Mossner R et al (2017) Consensus paper of the WFSBP Task Force on Genetics: genetics, epigenetics and gene expression markers of major depressive disorder and antidepressant response. World J Biol Psychiatry 18:5–28CrossRefPubMedGoogle Scholar
  32. 32.
    Fabbri C, Porcelli S, Serretti A (2014) From pharmacogenetics to pharmacogenomics: the way toward the personalization of antidepressant treatment. Can J Psychiatry 59:62–75CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Garriock HA, Kraft JB, Shyn SI et al (2010) A genomewide association study of citalopram response in major depressive disorder. Biol Psychiatry 67:133–138CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Goldstein JI, Jarskog LF, Hilliard C et al (2014) Clozapine-induced agranulocytosis is associated with rare HLA-DQB1 and HLA-B alleles. Nat Commun 5:4757CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Gressier F, Porcelli S, Calati R et al (2016) Pharmacogenetics of clozapine response and induced weight gain: a comprehensive review and meta-analysis. Eur Neuropsychopharmacol 26:163–185CrossRefPubMedGoogle Scholar
  36. 36.
    Grunder G, Baumann P, Conca A et al (2014) Therapeutic drug monitoring in psychiatry. A brief summary of the new consensus paper by the task force on TDM of the AGNP. Nervenarzt 85:847–855CrossRefPubMedGoogle Scholar
  37. 37.
    Gvozdic K, Brandl EJ, Taylor DL et al (2012) Genetics and personalized medicine in antidepressant treatment. Curr Pharm Des 18:5853–5878CrossRefPubMedGoogle Scholar
  38. 38.
    Hicks JK, Bishop JR, Sangkuhl K et al (2015) Clinical Pharmacogenetics Implementation Consortium (CPIC) Guideline for CYP2D6 and CYP2C19 genotypes and dosing of selective serotonin reuptake inhibitors. Clin Pharmacol Ther 98:127–134CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Hicks JK, Swen JJ, Thorn CF et al (2013) Clinical Pharmacogenetics Implementation Consortium guideline for CYP2D6 and CYP2C19 genotypes and dosing of tricyclic antidepressants. Clin Pharmacol Ther 93:402–408CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Hiemke C, Baumann P, Bergemann N et al (2011) AGNP consensus guidelines for therapeutic drug monitoring in psychiatry: update 2011. Pharmacopsychiatry 44:195–235CrossRefGoogle Scholar
  41. 41.
    Hiemke C, Bergemann N, Clement HW et al (2017) Consensus guidelines for therapeutic drug monitoring in neuropsychopharmacology: update 2017. Pharmacopsychiatry.  https://doi.org/10.1055/s-0043-116492 PubMedGoogle Scholar
  42. 42.
    Hou L, Heilbronner U, Degenhardt F et al (2016) Genetic variants associated with response to lithium treatment in bipolar disorder: a genome-wide association study. Lancet 387:1085–1093CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Hwang R, Zai C, Tiwari A et al (2010) Effect of dopamine D3 receptor gene polymorphisms and clozapine treatment response: exploratory analysis of nine polymorphisms and meta-analysis of the Ser9Gly variant. Pharmacogenomics J 10:200–218CrossRefPubMedGoogle Scholar
  44. 44.
    Investigators G, Investigators M, Investigators SD (2013) Common genetic variation and antidepressant efficacy in major depressive disorder: a meta-analysis of three genome-wide pharmacogenetic studies. Am J Psychiatry 170:207–217CrossRefGoogle Scholar
  45. 45.
    Ising M, Lucae S, Binder EB et al (2009) A genomewide association study points to multiple loci that predict antidepressant drug treatment outcome in depression. Arch Gen Psychiatry 66:966–975CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Kato M, Serretti A (2010) Review and meta-analysis of antidepressant pharmacogenetic findings in major depressive disorder. Mol Psychiatry 15:473–500CrossRefPubMedGoogle Scholar
  47. 47.
    Kirchheiner J, Lorch R, Lebedeva E et al (2008) Genetic variants in FKBP5 affecting response to antidepressant drug treatment. Pharmacogenomics 9:841–846CrossRefPubMedGoogle Scholar
  48. 48.
    Kirchheiner J, Nickchen K, Bauer M et al (2004) Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9:442–473CrossRefPubMedGoogle Scholar
  49. 49.
    Lett TA, Wallace TJ, Chowdhury NI et al (2012) Pharmacogenetics of antipsychotic-induced weight gain: review and clinical implications. Mol Psychiatry 17:242–266CrossRefPubMedGoogle Scholar
  50. 50.
    Lett TA, Walter H, Brandl EJ (2016) Pharmacogenetics and imaging-pharmacogenetics of antidepressant response: towards translational strategies. CNS Drugs 30:1169–1189CrossRefPubMedGoogle Scholar
  51. 51.
    Malhotra AK, Correll CU, Chowdhury NI et al (2012) Association between common variants near the melanocortin 4 receptor gene and severe antipsychotic drug-induced weight gain. Arch Gen Psychiatry 69:904–912CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Muller DJ, Kekin I, Kao AC et al (2013) Towards the implementation of CYP2D6 and CYP2C19 genotypes in clinical practice: update and report from a pharmacogenetic service clinic. Int Rev Psychiatry 25:554–571CrossRefPubMedGoogle Scholar
  53. 53.
    Murphy E, Mcmahon FJ (2013) Pharmacogenetics of antidepressants, mood stabilizers, and antipsychotics in diverse human populations. Discov Med 16:113–122PubMedGoogle Scholar
  54. 54.
    Niitsu T, Fabbri C, Bentini F et al (2013) Pharmacogenetics in major depression: a comprehensive meta-analysis. Progress in neuro-psychopharmacology. Biol Psychiatry 45:183–194Google Scholar
  55. 55.
    Perlis RH, Smoller JW, Ferreira MA et al (2009) A genomewide association study of response to lithium for prevention of recurrence in bipolar disorder. Am J Psychiatry 166:718–725CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Pirmohamed M (2011) Pharmacogenetics: past, present and future. Drug Discov Today 16:852–861CrossRefPubMedGoogle Scholar
  57. 57.
    Porcelli S, Fabbri C, Serretti A (2012) Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with antidepressant efficacy. Eur Neuropsychopharmacol 22:239–258CrossRefPubMedGoogle Scholar
  58. 58.
    Pouget JG, Shams TA, Tiwari AK et al (2014) Pharmacogenetics and outcome with antipsychotic drugs. Dialogues Clin Neurosci 16:555–566PubMedPubMedCentralGoogle Scholar
  59. 59.
    Ravyn D, Ravyn V, Lowney R et al (2013) CYP450 pharmacogenetic treatment strategies for antipsychotics: a review of the evidence. Schizophr Res 149:1–14CrossRefPubMedGoogle Scholar
  60. 60.
    Relling MV, Evans WE (2015) Pharmacogenomics in the clinic. Nature 526:343–350CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Reynolds GP, Arranz B, Templeman LA et al (2006) Effect of 5‑HT1A receptor gene polymorphism on negative and depressive symptom response to antipsychotic treatment of drug-naive psychotic patients. Am J Psychiatry 163:1826–1829CrossRefPubMedGoogle Scholar
  62. 62.
    Schatzberg AF, Debattista C, Lazzeroni LC et al (2015) ABCB1 genetic effects on antidepressant outcomes: a report from the iSPOT-D trial. Am J Psychiatry 172:751–759CrossRefPubMedGoogle Scholar
  63. 63.
    Serretti A, Kato M, De Ronchi D et al (2007) Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry 12:247–257CrossRefPubMedGoogle Scholar
  64. 64.
    Sicard MN, Zai CC, Tiwari AK et al (2010) Polymorphisms of the HTR2C gene and antipsychotic-induced weight gain: an update and meta-analysis. Pharmacogenomics 11:1561–1571CrossRefPubMedGoogle Scholar
  65. 65.
    Sistonen J, Sajantila A, Lao O et al (2007) CYP2D6 worldwide genetic variation shows high frequency of altered activity variants and no continental structure. Pharmacogenet Genomics 17:93–101PubMedGoogle Scholar
  66. 66.
    Staeker J, Leucht S, Laika B et al (2014) Polymorphisms in serotonergic pathways influence the outcome of antidepressant therapy in psychiatric inpatients. Genet Test Mol Biomarkers 18:20–31CrossRefPubMedGoogle Scholar
  67. 67.
    Stamm TJ, Rampp C, Wiethoff K et al (2016) The FKBP5 polymorphism rs1360780 influences the effect of an algorithm-based antidepressant treatment and is associated with remission in patients with major depression. J Psychopharmacol (Oxford) 30:40–47CrossRefGoogle Scholar
  68. 68.
    Uher R, Perroud N, Ng MY et al (2010) Genome-wide pharmacogenetics of antidepressant response in the GENDEP project. Am J Psychiatry 167:555–564CrossRefPubMedGoogle Scholar
  69. 69.
    Walden LM, Brandl EJ, Changasi A et al (2015) Physicians’ opinions following pharmacogenetic testing for psychotropic medication. Psychiatry Res 229:913–918CrossRefPubMedGoogle Scholar
  70. 70.
    Wang L, Fang C, Zhang A et al (2008) The -1019 C/G polymorphism of the 5‑HT(1)A receptor gene is associated with negative symptom response to risperidone treatment in schizophrenia patients. J Psychopharmacol (Oxford) 22:904–909CrossRefGoogle Scholar
  71. 71.
    Winner JG, Carhart JM, Altar CA et al (2015) Combinatorial pharmacogenomic guidance for psychiatric medications reduces overall pharmacy costs in a 1 year prospective evaluation. Curr Med Res Opin 31:1633–1643CrossRefPubMedGoogle Scholar
  72. 72.
    Zhang JP, Lencz T, Malhotra AK (2010) D2 receptor genetic variation and clinical response to antipsychotic drug treatment: a meta-analysis. Am J Psychiatry 167:763–772CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Zhang JP, Lencz T, Zhang RX et al (2016) Pharmacogenetic associations of antipsychotic drug-related weight gain: a systematic review and meta-analysis. Schizophr Bull 42(6):1418–1437.  https://doi.org/10.1093/schbul/sbw058 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Zou YF, Wang F, Feng XL et al (2010) Meta-analysis of FKBP5 gene polymorphisms association with treatment response in patients with mood disorders. Neurosci Lett 484:56–61CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • D. J. Müller
    • 1
    • 2
    Email author
  • E. J. Brandl
    • 3
    • 4
  • F. Degenhardt
    • 5
  • K. Domschke
    • 6
  • H. Grabe
    • 7
  • O. Gruber
    • 8
  • J. Hebebrand
    • 9
  • W. Maier
    • 10
  • A. Menke
    • 11
  • M. Riemenschneider
    • 12
  • M. Rietschel
    • 13
  • D. Rujescu
    • 14
  • T. G. Schulze
    • 15
  • L. Tebartz van Elst
    • 6
  • O. Tüscher
    • 16
  • J. Deckert
    • 11
  • das DGPPN Referat Neurobiologie und Genetik
  1. 1.Campbell Family Mental Health Research InstituteCentre for Addiction and Mental HealthTorontoKanada
  2. 2.Department of PsychiatryUniversity of TorontoTorontoKanada
  3. 3.Klinik für Psychiatrie und PsychotherapieCharité-Universitätsmedizin Berlin, Campus MitteBerlinDeutschland
  4. 4.Berlin Institute of HealthBerlinDeutschland
  5. 5.Institut für HumangenetikUniversitätsklinikum BonnBonnDeutschland
  6. 6.Klinik für Psychiatrie und PsychotherapieUniversität FreiburgFreiburgDeutschland
  7. 7.Klinik und Poliklinik für Psychiatrie und Psychotherapie an der Universitätsmedizin GreifswaldUniversität GreifswaldGreifswaldDeutschland
  8. 8.Klinik für Allgemeine Psychiatrie, Zentrum für Psychosoziale MedizinUniversitätsklinikum HeidelbergHeidelbergDeutschland
  9. 9.Klinik für Psychiatrie, Psychosomatik und Psychotherapie des Kindes- und JugendaltersUniversitätsklinikum Essen, Universität Duisburg-EssenEssenDeutschland
  10. 10.Klinik und Poliklinik für Psychiatrie und PsychotherapieUniversitätsklinikum BonnBonnDeutschland
  11. 11.Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie, Zentrum für Psychische GesundheitUniversitätsklinikum WürzburgWürzburgDeutschland
  12. 12.Klinik für PsychiatrieUniversitätsklinikum des SaarlandesHomburg/SaarDeutschland
  13. 13.Zentralinstitut für Seelische GesundheitMannheimDeutschland
  14. 14.Klinik und Poliklinik für Psychiatrie, Psychotherapie und PsychosomatikMartin-Luther-Universität Halle-WittenbergHalleDeutschland
  15. 15.Institut für Psychiatrische Phänomik und Genomik (IPPG)Klinikum der Universität München, LMU MünchenMünchenDeutschland
  16. 16.Klinik für Psychiatrie und PsychotherapieUniversitätsmedizin der Johannes-Gutenberg UniversitätMainzDeutschland

Personalised recommendations