Advertisement

Der Nervenarzt

, Volume 88, Issue 4, pp 345–355 | Cite as

Epidemiologie und Ursachen der Parkinson-Erkrankung

  • C. M. Lill
  • C. Klein
Leitthema

Zusammenfassung

Die Parkinson-Erkrankung ist die zweithäufigste neurodegenerative Erkrankung, die mit zunehmender Alterung der Industriegesellschaften eine wachsende sozioökonomische Relevanz bekommt. Ein kleiner Teil der unterschiedlichen Erkrankungsformen (<5 %) ist monogen, d. h. durch Mutationen in einzelnen Genen, bedingt. Nach heutigem Stand sind für die klinisch klassische Parkinson-Form drei autosomal-dominant (SNCA, LRRK2, VPS35) und drei autosomal-rezessiv wirkende kausale Gene (Parkin, PINK1, DJ-1) bekannt. Daneben existiert eine Vielzahl von Genen, die für atypische Parkinson-Formen verantwortlich sind. Der idiopathische M. Parkinson hingegen ist multifaktoriell bedingt. Genomweite Assoziationsstudien haben für diese Parkinson-Form insgesamt 26 Genorte etabliert. Für die meisten dieser Genorte sind die der Assoziation zugrunde liegenden funktionellen genetischen Varianten noch nicht identifiziert und die entsprechenden Pathomechanismen noch nicht verstanden. Des Weiteren gibt es eine Reihe mit der idiopathischen Parkinson-Erkrankung assoziierter Umwelt- und Lebensstilfaktoren. Als genuine Risikofaktoren können eine Exposition zu Pestiziden und möglicherweise eine positive Anamnese für Kopftraumata angesehen werden. Andere mit der Parkinson-Erkrankung assoziierte Faktoren wie etwa Rauchen, Kaffee- und Alkoholkonsum stellen möglicherweise keine Risikofaktoren dar; die Ursache-Wirkungs-Beziehung ist für viele der Faktoren noch ungeklärt. Ein Patient mit einer positiven Familienanamnese und/oder einem jungen Erkrankungsalter sollte hinsichtlich einer möglicherweise vorliegenden monogenen Krankheitsform genetisch beraten werden. Eine Krankheitsvorhersage für die idiopathische Erkrankungsform aufgrund genetischer und Umwelt-/Lebensstilfaktoren ist hingegen noch nicht möglich und potenzielle genspezifische Therapien befinden sich noch in Entwicklungs- und ersten Testphasen.

Schlüsselwörter

Mutation Risiko SNP Umwelt Lebensstil 

Epidemiology and causes of Parkinson’s disease

Abstract

Parkinson’s disease (PD) is the second most common neurodegenerative disease and has a growing socioeconomic impact due to demographic changes in the industrial nations. There are several forms of PD, a fraction of which (<5%) are monogenic, i. e. caused by mutations in single genes. At present, six genes have been established for the clinically classical form of parkinsonism including three autosomal dominantly (SNCA, LRRK2, VPS35) and three autosomal recessively inherited ones (Parkin, PINK1, DJ-1). In addition, there are a plethora of genes causing atypical forms of parkinsonism. In contrast, idiopathic PD is of a multifactorial nature. Genome-wide association studies have established a total of 26 genetic loci for this form of the disease; however, for most of these loci the underlying functional genetic variants have not yet been identified and the respective disease mechanisms remain unresolved. Furthermore, there are a number of environmental and life style factors that are associated with idiopathic PD. Exposure to pesticides and possibly a history of head trauma represent genuine risk factors. Other PD-associated factors, such as smoking and intake of coffee and alcohol may not represent risk factors per se and the cause-effect relationship has not yet been elucidated for most of these factors. A patient with a positive family history and/or an early age of disease onset should undergo counseling with respect to a possible monogenic form of the disease. Disease prediction based on genetic, environmental and life style factors is not yet possible for idiopathic PD and potential gene-specific therapies are currently in the development or early testing phase.

Keywords

Mutation Risk SNP Environment Life style 

Notes

Danksagung

Unser Dank gilt allen Mitarbeitern und Kooperationspartnern, die zur Erstellung und Aktualisierung der PDGene- und MDSGene-Datenbanken beigetragen haben. C.M. Lill erhält Förderungen der International Parkinson and Movement Disorder Society (MDS), der Deutschen Forschungsgemeinschaft (FOR2488/1, GZ LI 2654/2-1), der Possehl-Stiftung, der Renate-Maaß-Stiftung und der Universität zu Lübeck (Mittel der Sektion Medizin, J21-2016). C. Klein wird von der DFG (FOR2488/1), der MDS und der Hermann und Lilly Schilling-Stiftung gefördert.

Einhaltung ethischer Richtlinien

Interessenkonflikt

C. M. Lill gibt an, dass kein Interessenkonflikt besteht. C. Klein ist als medizinische Beraterin bei Centogene tätig.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Ascherio A, Schwarzschild MA (2016) The epidemiology of Parkinson’s disease: risk factors and prevention. Lancet Neurol 15(12):1257–1272CrossRefPubMedGoogle Scholar
  2. 2.
    Hirtz D, Thurman DJ, Gwinn-Hardy K, Mohamed M, Chaudhuri AR, Zalutsky R (2007) How common are the „common“ neurologic disorders? Neurology 68(5):326–337CrossRefPubMedGoogle Scholar
  3. 3.
    Elbaz A, Bower JH, Maraganore DM, McDonnell SK, Peterson BJ, Ahlskog JE et al (2002) Risk tables for parkinsonism and Parkinson’s disease. J Clin Epidemiol 55(1):25–31CrossRefPubMedGoogle Scholar
  4. 4.
    Dorsey ER, Constantinescu R, Thompson JP, Biglan KM, Holloway RG, Kieburtz K et al (2007) Projected number of people with Parkinson disease in the most populous nations, 2005 through 2030. Neurology 68(5):384–386CrossRefPubMedGoogle Scholar
  5. 5.
    Saarni SI, Härkänen T, Sintonen H, Suvisaari J, Koskinen S, Aromaa A et al (2006) The impact of 29 chronic conditions on health-related quality of life: a general population survey in Finland using 15D and EQ-5D. Qual Life Res 15(8):1403–1414CrossRefPubMedGoogle Scholar
  6. 6.
    Lill CM, Roehr JT, McQueen MB, Kavvoura FK, Bagade S, Schjeide B‑MM et al (2012) Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: The PDGene database. PLOS Genet 8(3):e1002548CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ et al (2012) Meta-analysis of early nonmotor features and risk factors for Parkinson disease. Ann Neurol 72(6):893–901CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Volta M, Milnerwood AJ, Farrer MJ (2015) Insights from late-onset familial parkinsonism on the pathogenesis of idiopathic Parkinson’s disease. Lancet Neurol 14(10):1054–1064CrossRefPubMedGoogle Scholar
  9. 9.
    Marras C, Lang A, van de Warrenburg BP, Sue C, Tabrizi SJ, Bertram L et al (2016) Nomenclature of Genetic Movement Disorders: Recommendations of the International Parkinson and Movement Disorder Society Task Force. Mov Disord 31(4):436–457CrossRefPubMedGoogle Scholar
  10. 10.
    Lill CM (2016) Genetics of Parkinson’s disease. Mol Cell Probes 30(6):386–396CrossRefPubMedGoogle Scholar
  11. 11.
    Marras C, Lohmann K, Lang A, Klein C (2012) Fixing the broken system of genetic locus symbols: Parkinson disease and dystonia as examples. Neurology 78(13):1016–1024CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Lill CM, Mashychev A, Hartmann C, Lohmann K, Marras C, Lang AE et al (2016) Launching the movement disorders society genetic mutation database (MDSGene). Mov Disord 31(5):607–609CrossRefPubMedGoogle Scholar
  13. 13.
    Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A et al (1997) Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047CrossRefPubMedGoogle Scholar
  14. 14.
    Singleton AB, Farrer M, Johnson J, Singleton A, Hague S, Kachergus J et al (2003) alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841CrossRefPubMedGoogle Scholar
  15. 15.
    Paisán-Ruíz C, Jain S, Evans EW, Gilks WP, Simón J, van der Brug M et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44(4):595–600CrossRefPubMedGoogle Scholar
  16. 16.
    Zimprich A, Biskup S, Leitner P, Lichtner P, Farrer M, Lincoln S et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607CrossRefPubMedGoogle Scholar
  17. 17.
    Vilariño-Güell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ et al (2011) VPS35 mutations in Parkinson disease. Am J Hum Genet 89(1):162–167CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Zimprich A, Benet-Pagès A, Struhal W, Graf E, Eck SH, Offman MN et al (2011) A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet 89(1):168–175CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y, Minoshima S et al (1998) Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392(6676):605–608CrossRefPubMedGoogle Scholar
  20. 20.
    Valente EM, Abou-Sleiman PM, Caputo V, Muqit MMK, Harvey K, Gispert S et al (2004) Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304(5674):1158–1160CrossRefPubMedGoogle Scholar
  21. 21.
    Bonifati V, Rizzu P, van Baren MJ, Schaap O, Breedveld GJ, Krieger E et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299(5604):256–259CrossRefPubMedGoogle Scholar
  22. 22.
    Nalls MA, Pankratz N, Lill CM, Do CB, Hernandez DG, Saad M et al (2014) Large-scale meta-analysis of genome-wide association data identifies six new risk loci for Parkinson’s disease. Nat Genet 46(9):989–993CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Marttila RJ, Rinne UK (1991) Progression and survival in Parkinson’s disease. Acta Neurol Scand 84(S136):24–28CrossRefGoogle Scholar
  24. 24.
    Kasten M, Klein C (2013) The many faces of alpha-synuclein mutations. Mov Disord 28(6):697–701CrossRefPubMedGoogle Scholar
  25. 25.
    Healy DG, Falchi M, O’Sullivan SS, Bonifati V, Durr A, Bressman S et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7(7):583–590CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Lücking CB, Dürr A, Bonifati V, Vaughan J, De Michele G, Gasser T et al (2000) Association between early-onset Parkinson’s disease and mutations in the parkin gene. N Engl J Med 342(21):1560–1567CrossRefPubMedGoogle Scholar
  27. 27.
    Hedrich K, Eskelson C, Wilmot B, Marder K, Harris J, Garrels J et al (2004) Distribution, type, and origin of Parkin mutations: review and case studies. Mov Disord 19(10):1146–1157CrossRefPubMedGoogle Scholar
  28. 28.
    Grünewald A, Kasten M, Ziegler A, Klein C (2013) Next-generation phenotyping using the parkin example: time to catch up with genetics. JAMA Neurol 70(9):1186–1191CrossRefPubMedGoogle Scholar
  29. 29.
    Klein C, Djarmati A, Hedrich K, Schäfer N, Scaglione C, Marchese R et al (2005) PINK1, Parkin, and DJ-1 mutations in Italian patients with early-onset parkinsonism. Eur J Hum Genet 13(9):1086–1093CrossRefPubMedGoogle Scholar
  30. 30.
    Meiser J, Delcambre S, Wegner A, Jäger C, Ghelfi J, d’Herouel AF et al (2016) Loss of DJ-1 impairs antioxidant response by altered glutamine and serine metabolism. Neurobiol Dis 89:112–125CrossRefPubMedGoogle Scholar
  31. 31.
    Krebs CE, Karkheiran S, Powell JC, Cao M, Makarov V, Darvish H et al (2013) The Sac1 domain of SYNJ1 identified mutated in a family with early-onset progressive Parkinsonism with generalized seizures. Hum Mutat 34(9):1200–1207CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Funayama M, Ohe K, Amo T, Furuya N, Yamaguchi J, Saiki S et al (2015) CHCHD2 mutations in autosomal dominant late-onset Parkinson’s disease: a genome-wide linkage and sequencing study. Lancet Neurol 14(3):274–282CrossRefPubMedGoogle Scholar
  33. 33.
    Deng H‑X, Shi Y, Yang Y, Ahmeti KB, Miller N, Huang C et al (2016) Identification of TMEM230 mutations in familial Parkinson’s disease. Nat Genet 48(7):733–739CrossRefPubMedGoogle Scholar
  34. 34.
    Lesage S, Drouet V, Majounie E, Deramecourt V, Jacoupy M, Nicolas A et al (2016) Loss of VPS13C function in autosomal-recessive Parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-dependent mitophagy. Am J Hum Genet 98(3):500–513CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Wilson GR, Sim JCH, McLean C, Giannandrea M, Galea CA, Riseley JR et al (2014) Mutations in RAB39B cause X‑linked intellectual disability and early-onset Parkinson disease with α‑synuclein pathology. Am J Hum Genet 95(6):729–735CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Lambert J‑C, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C et al (2013) Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nat Genet 45(12):1452–1458CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Sawcer S (2010) Bayes factors in complex genetics. Eur J Hum Genet 18(7):746–750CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Lenz TL, Deutsch AJ, Han B, Hu X, Okada Y, Eyre S et al (2015) Widespread non-additive and interaction effects within HLA loci modulate the risk of autoimmune diseases. Nat Genet 47(9):1085–1090CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Schrag A, Horsfall L, Walters K, Noyce A, Petersen I (2015) Prediagnostic presentations of Parkinson’s disease in primary care: a case-control study. Lancet Neurol 14(1):57–64CrossRefPubMedGoogle Scholar
  40. 40.
    Srinivasan R, Henley BM, Henderson BJ, Indersmitten T, Cohen BN, Kim CH et al (2016) Smoking-relevant nicotine concentration attenuates the unfolded protein response in dopaminergic neurons. J Neurosci 36(1):65–79CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Toulorge D, Guerreiro S, Hild A, Maskos U, Hirsch EC, Michel PP (2011) Neuroprotection of midbrain dopamine neurons by nicotine is gated by cytoplasmic Ca2. FASEB J 25(8):2563–2573CrossRefPubMedGoogle Scholar
  42. 42.
    Chen X, Lan X, Roche I, Liu R, Geiger JD (2008) Caffeine protects against MPTP-induced blood-brain barrier dysfunction in mouse striatum. J Neurochem 107(4):1147–1157PubMedPubMedCentralGoogle Scholar
  43. 43.
    Schwarzschild MA, Xu K, Oztas E, Petzer JP, Castagnoli K, Castagnoli N et al (2003) Neuroprotection by caffeine and more specific A2A receptor antagonists in animal models of Parkinson’s disease. Neurology 61(11 Suppl 6):S55–61CrossRefPubMedGoogle Scholar
  44. 44.
    Ritz B, Lee P‑C, Lassen CF, Arah OA (2014) Parkinson disease and smoking revisited: ease of quitting is an early sign of the disease. Neurology 83(16):1396–1402CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Tarazi A, Tator CH, Tartaglia MC (2016) Chronic traumatic encephalopathy and movement disorders: update. Curr Neurol Neurosci Rep 16(5):46CrossRefPubMedGoogle Scholar
  46. 46.
    Marras C, Goldman SM (2011) Genetics meets environment: evaluating gene-environment interactions in neurologic diseases. Semin Neurol 31(5):553–561CrossRefPubMedGoogle Scholar
  47. 47.
    Hamza TH, Chen H, Hill-Burns EM, Rhodes SL, Montimurro J, Kay DM et al (2011) Genome-wide gene-environment study identifies glutamate receptor gene GRIN2A as a Parkinson’s disease modifier gene via interaction with coffee. PLOS Genet 7(8):e1002237CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Ahmed I, Lee P‑C, Lill CM, Searles Nielsen S, Artaud F, Gallagher LG et al (2014) Lack of replication of the GRIN2A-by-coffee interaction in Parkinson disease. PLOS Genet 10(11):e1004788CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hill-Burns EM, Singh N, Ganguly P, Hamza TH, Montimurro J, Kay DM et al (2013) A genetic basis for the variable effect of smoking/nicotine on Parkinson’s disease. Pharmacogenomics J 13(6):530–537CrossRefPubMedGoogle Scholar
  50. 50.
    Biernacka JM, Chung SJ, Armasu SM, Anderson KS, Lill CM, Bertram L et al (2016) Genome-wide gene-environment interaction analysis of pesticide exposure and risk of Parkinson’s disease. Parkinsonism Relat Disord 32:25–30CrossRefPubMedGoogle Scholar
  51. 51.
    Lill CM, Klein C Chapter 1: The Neurogenetics of Parkinson’s disease and Putative Links to Other Neurodegenerative Disorders. Parkinson’s Disease. Elsevier, in press.Google Scholar

Copyright information

© Springer Medizin Verlag Berlin 2017

Authors and Affiliations

  1. 1.Institut für Neurogenetik, Universitätsklinikum Schleswig Holstein, Campus LübeckUniversität zu LübeckLübeckDeutschland

Personalised recommendations