Der Nervenarzt

, Volume 85, Issue 1, pp 26–34 | Cite as

Narkolepsie

Leitthema

Zusammenfassung

Die Narkolepsie ist eine seltene Erkrankung. Die klassische Form umfasst die 4 Symptome exzessive Tagesmüdigkeit, Kataplexie, Schlaflähmung (Schlafparalyse) und hypnagoge Halluzinationen. Als Modellerkrankung nimmt sie in der Neurologie und Schlafmedizin eine bedeutende Rolle ein, da sie alle Übergänge vom Wach- in die Schlafzustände, Non-REM und REM aufweist. Bei Narkolepsiepatienten findet sich eine verringerte Zahl von hypokretinproduzierenden Neuronen im Hypothalamus und entsprechend ist der Hypokretinspiegel im Liquor erniedrigt. Das Neuropeptid Hypokretin (Orexin) besitzt Steuerfunktionen des Schlaf-Wach-Zyklus, der Regulation des autonomen Nervensystems, der Motorik und der metabolischen Prozesse. Dass die Narkolepsie noch immer zu spät diagnostiziert wird, ist in der modernen Medizin kaum nachvollziehbar. Möglicherweise ist die hohe Assoziation mit anderen Schlaf-Wach-Störungen hierfür verantwortlich. Genomweite Analysen konnten zeigen, dass Autoimmunmechanismen wesentlich an der Entstehung der Narkolepsie beteiligt sind. Hiervon sind die HLA-Assoziation mit inzwischen bekannten Allelen für Suszeptibilität und Protektion von allen bisher beschriebenen Assoziationen am wichtigsten. Bildgebende Verfahren zeigen auch neurodegenerative Veränderungen, sodass weiterhin eine multifaktorielle Ätiopathogenese wahrscheinlich ist. Das häufige Auftreten metabolischer Störungen ist noch nicht hinreichend geklärt. Die Früherkennung der Narkolepsie birgt neben den Möglichkeiten, den Betroffenen durch angemessene Therapie ein fast normales Leben zu ermöglichen, auch die Option einer immunmodulierenden Therapie, mit der Chance die Narkolepsie zu heilen.

Schlüsselwörter

Narkolepsie Kataplexie Hypokretin HLA Immunmodulierende Therapie 

Narcolepsy

Summary

Narcolepsy is a rare sleep disorder. The classical presentation includes the four symptoms excessive daytime sleepiness, cataplexy, sleep paralysis and hypnagogic hallucinations. As a model disease with all the transitions from awake to sleeping conditions, non-rapid eye movement (NREM) and rapid eye movement (REM), it plays an important role in neurology and sleep medicine. Patients with narcolepsy possess a reduced number of hypocretin-producing neurons in the hypothalamus and accordingly the hypocretin level in the cerebrospinal fluid is low. The neuropeptide hypocretin (orexin) has functions, such as the regulation of the sleep-wake cycle, the autonomous nerve system, motor system and metabolic processes. The delay in diagnosing narcolepsy is difficult to comprehend in modern medicine. The frequent association with other sleep-wake disorders may be responsible for the delay. Genomewide association studies have subsequently been able to prove that autoimmune mechanisms are responsible for the manifestation of narcolepsy with the HLA association being the most important for susceptibility and protection. Imaging studies have revealed neurodegenerative changes, making a multifactorial etiopathogenesis probable. The frequent occurrence of metabolic disorders has not yet been clarified. Early diagnosis of narcolepsy has the possibility to offer affected persons an adequate medication to lead an almost normal life and the future possibility to cure narcolepsy through immunomodulation therapy.

Keywords

Narcolepsy Cataplexy Hypocretin HLA Immunomodulating therapy 

Literatur

  1. 1.
    American Academy of Sleep Medicine (1994) Practice parameters for the use of stimulants in the treatment of narcolepsy. Standards of Practice Committee of the American Sleep Disorders Association. Sleep 17:348–351Google Scholar
  2. 2.
    American Academy of Sleep Medicine (2005) The international classification of sleep disorders: diagnostic and coding manual, 2. Aufl. American Academy of Sleep Medicine, WestchesterGoogle Scholar
  3. 3.
    Billiard M, Bassetti C, Dauvilliers Y, Dolenc-Groselj L et al (2006) EFNS guidelines on management of narcolepsy. Eur J Neurol 13:1035–1048PubMedCrossRefGoogle Scholar
  4. 4.
    Chen W, Black J, Call P, Mignot E (2005) Late-onset narcolepsy presenting as rapidly progressing muscle weakness: response to plasmapheresis. Ann Neurol 58:489–490PubMedCrossRefGoogle Scholar
  5. 5.
    Cvetkovic-Lopes V, Bayer L, Dorsaz S et al (2010) Elevated Tribbles homolog 2-specific antibody levels in narcolepsy patients. J Clin Invest 120:713–719PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Dauvilliers Y, Abril B, Mas E et al (2009) Normalization of hypocretin-1 in narcolepsy after intravenous immunoglobulin treatment. Neurology 73(16):1333–1334PubMedCrossRefGoogle Scholar
  7. 7.
    Dauvilliers Y, Arnulf I, Mignot E (2007) Narcolepsy with cataplexy. Lancet 369:499–511PubMedCrossRefGoogle Scholar
  8. 8.
    Dauvilliers Y, Delallée N, Jaussent I et al (2012) Normal cerebrospinal fluid histamine and tele-methylhistamine levels in hypersomnia conditions. Sleep 35:1359–1366. (Dauvilliers, Histamine Metabolites)PubMedGoogle Scholar
  9. 9.
    Dauvilliers Y, Jaussent I, Krams B, Scholz S et al (2012) Non-Dipping blood pressure profile in narcolepsy with cataplexy. PLoS One 7(6):e38977PubMedCrossRefPubMedCentralGoogle Scholar
  10. 10.
    Dodel R, Peter H, Spottke A et al (2007) Health-related quality of life in patients with narcolepsy. Sleep Med 8:733–741PubMedCrossRefGoogle Scholar
  11. 11.
    Donjacour CE, Lammers GJ (2012) A remarkable effect of alemtuzumab in a patient suffering from narcolepsy with cataplexy. J Sleep Res 21(4):479–480PubMedCrossRefGoogle Scholar
  12. 12.
    Droogleever Fortuyn HA, Swinkels S, Buitelaar J et al (2008) High prevalence of eating disorders in narcolepsy with cataplexy: a case-control study. Sleep 31(3):335Google Scholar
  13. 13.
    Ebben MR, Krieger AC (2012) Narcolepsy with cataplexy masked by the use of nicotine. J Clin Sleep Med 8(2):195–196PubMedGoogle Scholar
  14. 14.
    Ghei M (2008) Case 36-2007: a woman with rash, fever, and hypotension. N Engl J Med 358(13):1405PubMedCrossRefGoogle Scholar
  15. 15.
    Hor H, Kutalik Z, Dauvilliers Y et al (2010) Genome-wide association study identifies new HLA class II haplotypes strongly protective against narcolepsy. Nat Genet 42:786–789PubMedCrossRefGoogle Scholar
  16. 16.
    Husain AM, Yancy WS Jr, Carwile ST et al (2004) Diet therapy for narcolepsy. Neurology 62(12):2300–2302PubMedCrossRefGoogle Scholar
  17. 17.
    Inocente C, Arnulf I, Bastuji H, Thibault-Stoll A et al (2012) Pitolisant, an inverse agonist of the histamine H3 receptor: an alternative stimulant for narcolepsy-cataplexy in teenagers with refractory sleepiness. Clin Neuropharmacol 35(2):55–60PubMedCrossRefGoogle Scholar
  18. 18.
    Izzi F, Placidi F, Marciani MG (2009) Effective treatment of narcolepsy-cataplexy with duloxetine. A report of 3 cases. Sleep Med 10:153–154PubMedCrossRefGoogle Scholar
  19. 19.
    Lin JS, Dauvilliers Y, Arnulf I et al (2008) An inverse agonist of the histamine H(3) receptor improves wakefulness in narcolepsy: studies in orexin-/- mice and patients. Neurobiol Dis 30(1):74–83PubMedCrossRefGoogle Scholar
  20. 20.
    Luca G, Haba-Rubio J, Dauvilliers Y, Lammers GJ et al (2012) Clinical, polysomnographic and genome-wide association analyses of narcolepsy with cataplexy: a European Narcolepsy Network study. J Sleep Res 1–15Google Scholar
  21. 21.
    Maurovich-Horvat E, Kemlink D, Högl B, Frauscher B et al (2013) Narcolepsy and pregnancy: a retrospective evaluation of 249 pregnancies. J Sleep Res. doi:10.1111/jsr.12047Google Scholar
  22. 22.
    Mayer G (2006) Narkolepsie Taschenatlas spezial. Thieme, StuttgartGoogle Scholar
  23. 23.
    Mayer G, Kesper K, Ploch T et al (2002) The implications of gender and age at onset of first symptoms in narcoleptic patients in Germany – results from retrospective evaluation of hospital records. Somnologie 6(1):13–18CrossRefGoogle Scholar
  24. 24.
    Partinen M, Saarenpää-Heikkilä O, Ilveskoski I et al (2012) Increased incidence and clinical picture of childhood narcolepsy following the 2009 H1N1 pandemic vaccination campaign in Finland. PLoS One 7(3):e33723PubMedCrossRefPubMedCentralGoogle Scholar
  25. 25.
    Poli F, Overeem S, Lammers G et al (2013) Narcolepsy as an adverse event following immunization: case definition and guidelines for data collection, analysis and presentation. Vaccine 31:994–1007PubMedCrossRefGoogle Scholar
  26. 26.
    Poli F, Plazzi G, Di Dalmazi G et al (2010) Body mass index-independent metabolic alterations in narcolepsy with cataplexy. Sleep 11(4):423–425Google Scholar
  27. 27.
    Rieger M, Mayer G, Gauggel S (2003) Attention deficits in patients with narcolepsy. Sleep 26:31–35Google Scholar
  28. 28.
    Schuld A, Hebebrand J, Geller F, Pollmächer T (2000) Increased body-mass index in patients with narcolepsy. Lancet 355:1274–1275PubMedCrossRefGoogle Scholar
  29. 29.
    Serra L, Montagna P, Mignot E et al (2008) Cataplexy features in childhood narcolepsy. Mov Disord 23(6):858–868PubMedCrossRefGoogle Scholar
  30. 30.
    Tafti M, Hor H, Dauvilliers Y et al (2013) GWAS replication: DQB1 alone explains most of the risk and protection in narcolepsy with cataplexy in Europe. Sleep (submitted)Google Scholar
  31. 31.
    Thannickal TC, Moore RY, Nienhuis R et al (2000) Reduced number of hypocretin neurons in human narcolepsy. Neuron 27:469–474PubMedCrossRefGoogle Scholar
  32. 32.
    Thannickal TC, Nienhuis R, Siegel JM (2009) Localized loss of hypocretin cells in narcolepsy without cataplexy. 32(8):993–998Google Scholar
  33. 33.
    Thorpy M, Zhao CG, Dauvilliers Y (2013) Management of narcolepsy during pregnancy. Sleep Med 14(4):367–376PubMedCrossRefGoogle Scholar
  34. 34.
    Wise MS, Arand DL, Auger RR, Brooks SN et al (2007) Treatment of narcolepsy and other hypersomnias of central origin. Sleep 30(12):1712–1727PubMedGoogle Scholar
  35. 35.
    Wu H, Xia FZ, Xu H, Zhai HL et al (2012) Acute effects of different glycemic index diets on serum motilin, orexin and neuropeptide Y concentrations in healthy individuals. Neuropeptides 46(3):113–118PubMedCrossRefGoogle Scholar
  36. 36.
    Mignot E, Lammers GJ, Ripley B et al (2002) The role of cerebrospinal fluid hypocretin measurement in the diagnosis of narcolepsy and other hypersomnias. Arch Neurol 59:1553–1563PubMedCrossRefGoogle Scholar
  37. 37.
    Menzler K, Belke M, Unger MM et al (2012) DTI reveals hypothalamic and brainstem white matter lesions in patients with idiopathic narcolepsy. Sleep Med 13(6):736–742PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Klinik für NeurologieHephata Klinik, Philipps-Universität MarburgSchwalmstadt-TreysaDeutschland

Personalised recommendations