Der Nervenarzt

, Volume 85, Issue 2, pp 137–146 | Cite as

Tiefe Hirnstimulation bei Morbus Parkinson: wann und für wen?

Leitthema

Zusammenfassung

Die tiefe Hirnstimulation (THS) stellt eine effektive und evidenzbasierte Therapieoption in der Behandlung der Parkinson-Erkrankung dar. Studien haben belegt, dass die THS gute und langanhaltende Effekte auf die Motorik und die Lebensqualität der Patienten in einem fortgeschrittenen Krankheitsstadium hat und einer rein medikamentösen Therapie überlegen ist. Erst kürzlich konnte nun auch eine positive Wirkung der THS in einem früheren Stadium der Erkrankung nachgewiesen werden. Dem stehen die Risiken und Nebenwirkungen des Verfahrens gegenüber, die sich als prozedural-assoziierte Komplikationen, wie Blutungen und Infektionen, aber auch als therapieassoziierte Phänomene, wie etwa neuropsychiatrische Störungen und motorische Nebenwirkungen, manifestieren können. Trotz der guten Wirksamkeit der THS bleiben weiterhin wichtige klinische Fragen offen, denen sich diese Übersichtsarbeit unter Berücksichtigung neuer randomisierter, kontrollierter Studien widmet.

Nach diesen Studien ist die THS der besten medikamentösen Behandlung schon früher im Krankheitsverlauf, nämlich beim ersten Auftreten von Wirkfluktuationen oder Dyskinesien, überlegen und kann somit schon zu diesem Zeitpunkt als Therapieoption in Erwägung gezogen werden. Die strenge Indikationsstellung ist ebenso wie der Ausschluss von Kontraindikationen für den Erfolg der Intervention entscheidend. Die Wahl des Zielpunktes sollte sich an der individuellen Symptomausprägung des Patienten ausrichten, wobei sich der Nucleus subthalamicus (STN) als Standardziel etabliert hat. In jedem Fall müssen eine individuelle Abwägung von Chancen und Risiken erfolgen und mit dem Patienten eine realistische Zielsetzung sowie angemessene Erwartungen formuliert werden.

Schlüsselwörter

Morbus Parkinson Tiefe Hirnstimulation Nucleus subthalamicus Lebensqualität Kriterien 

Deep brain stimulation for Parkinson’s disease: timing and patient selection

Summary

Deep brain stimulation (DBS) is an effective and evidence-based treatment option for Parkinson’s disease. Studies have shown that DBS has good and long-term effects on motor function and quality of life for patients in an advanced stage of the disease and that it is more effective than medical therapy alone. Moreover, a favorable effect of DBS could also be detected at an earlier stage of the disease. On the other hand, possible risks and side effects of the procedure need to be taken into consideration. These can manifest as procedure-related complications, such as bleeding and infections in addition to stimulation-associated phenomena, such as neuropsychiatric disorders and motor side effects. Despite the good effects of DBS important issues still need to be addressed which will be discussed in this article considering the results of several new randomized and controlled clinical studies.

For patients with Parkinson’s disease with early fluctuations and dyskinesia, DBS has been found to be superior to the best pharmaceutical treatment; therefore, DBS can be considered as a treatment option in the earlier course of the disease. The diagnostic evaluation and the exclusion of contraindications are crucial for patient selection. The choice of the target should be based on the individual symptoms in patients although the subthalamic nucleus (STN) can be considered the standard target. In every case an individual assessment of chances and risks must be conducted and realistic goals and reasonable expectations must be defined.

Keywords

Parkinson’s disease Deep brain stimulation Nucleus subthalamicus Quality of life Criteria 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt. R. Erasmi erhielt Referentenhonorare von Medtronic sowie Reisekostenunterstützung von Medtronic und Allergan. K. Witt hat Reisekostenunterstützungen von Medtronic, UCB, GlaxoSmithKline sowie Referentenhonorare von UCB, GlaxoSmithKline, Desitin und Teva sowie Buchhonorare von Elsevier erhalten. Er erhält Forschungsförderungen von BMBF und der DFG. G. Deuschl hat Vortragshonorare von Desitin, UCB und Medtronic sowie Buchhonorare von Thieme und Elsevier erhalten. Er hat Beratertätigkeit für Sapiens, Medtronic, TEVA und Britannica erbracht und Forschungsunterstützung von DFG, BMBF und Medtronic erhalten. Dieser Beitrag beinhaltet keine Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Barone P, Antonini A, Colosimo C et al (2009) The PRIAMO study: a multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord 24:1641–1649CrossRefPubMedGoogle Scholar
  2. 2.
    Blomstedt P, Bjartmarz H (2012) Intracerebral infections as a complication of deep brain stimulation. Stereotact Funct Neurosurg 90:92–96CrossRefPubMedGoogle Scholar
  3. 3.
    Castrioto A, Lozano AM, Poon YY et al (2011) Ten-year outcome of subthalamic stimulation in Parkinson disease: a blinded evaluation. Arch Neurol 68:1550–1556CrossRefPubMedGoogle Scholar
  4. 4.
    Chaudhuri KR, Healy DG, Schapira AH (2006) Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol 5:235–245CrossRefPubMedGoogle Scholar
  5. 5.
    Daniels C, Krack P, Volkmann J et al (2010) Risk factors for executive dysfunction after subthalamic nucleus stimulation in Parkinson’s disease. Mov Disord 25:1583–1589CrossRefPubMedGoogle Scholar
  6. 6.
    Deuschl G, Agid Y (2013) Subthalamic neurostimulation for Parkinson’s disease with early fluctuations: balancing the risks and benefits. Lancet Neurol 12:1025–1034CrossRefPubMedGoogle Scholar
  7. 7.
    Deuschl G, Paschen S, Witt K (2013) Clinical outcome of deep brain stimulation for Parkinson’s disease. Handb Clin Neurol 116C:107–128CrossRefGoogle Scholar
  8. 8.
    Deuschl G, Schade-Brittinger C, Krack P et al (2006) A randomized trial of deep-brain stimulation for Parkinson’s disease. N Engl J Med 355:896–908CrossRefPubMedGoogle Scholar
  9. 9.
    Doshi PK (2011) Long-term surgical and hardware-related complications of deep brain stimulation. Stereotact Funct Neurosurg 89:89–95CrossRefPubMedGoogle Scholar
  10. 10.
    Falowski S, Ooi YC, Smith A et al (2012) An evaluation of hardware and surgical complications with deep brain stimulation based on diagnosis and lead location. Stereotact Funct Neurosurg 90:173–180CrossRefPubMedGoogle Scholar
  11. 11.
    Fasano A, Daniele A, Albanese A (2012) Treatment of motor and non-motor features of Parkinson’s disease with deep brain stimulation. Lancet Neurol 11:429–442CrossRefPubMedGoogle Scholar
  12. 12.
    Fasano A, Romito LM, Daniele A et al (2010) Motor and cognitive outcome in patients with Parkinson’s disease 8 years after subthalamic implants. Brain 133:2664–2676CrossRefPubMedGoogle Scholar
  13. 13.
    Follett KA, Weaver FM, Stern M et al (2010) Pallidal versus subthalamic deep-brain stimulation for Parkinson’s disease. N Engl J Med 362:2077–2091CrossRefPubMedGoogle Scholar
  14. 14.
    Gervais-Bernard H, Xie-Brustolin J, Mertens P et al (2009) Bilateral subthalamic nucleus stimulation in advanced Parkinson’s disease: five year follow-up. J Neurol 256:225–233CrossRefPubMedGoogle Scholar
  15. 15.
    Kimmelman J, Duckworth K, Ramsay T et al (2011) Risk of surgical delivery to deep nuclei: a meta-analysis. Mov Disord 26:1415–1421CrossRefPubMedGoogle Scholar
  16. 16.
    Kleiner-Fisman G, Herzog J, Fisman DN et al (2006) Subthalamic nucleus deep brain stimulation: summary and meta-analysis of outcomes. Mov Disord 21(Suppl 14):S290–S304CrossRefPubMedGoogle Scholar
  17. 17.
    Krack P, Batir A, Van Blercom N et al (2003) Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson’s disease. N Engl J Med 349:1925–1934CrossRefPubMedGoogle Scholar
  18. 18.
    Odekerken VJ, Van Laar T, Staal MJ et al (2013) Subthalamic nucleus versus globus pallidus bilateral deep brain stimulation for advanced Parkinson’s disease (NSTAPS study): a randomised controlled trial. Lancet Neurol 12:37–44CrossRefPubMedGoogle Scholar
  19. 19.
    Okun MS, Gallo BV, Mandybur G et al (2012) Subthalamic deep brain stimulation with a constant-current device in Parkinson’s disease: an open-label randomised controlled trial. Lancet Neurol 11:140–149CrossRefPubMedGoogle Scholar
  20. 20.
    Rodriguez-Oroz MC, Moro E, Krack P (2012) Long-term outcomes of surgical therapies for Parkinson’s disease. Mov Disord 27:1718–1728CrossRefPubMedGoogle Scholar
  21. 21.
    Schuepbach WM, Rau J, Knudsen K et al (2013) Neurostimulation for Parkinson’s disease with early motor complications. N Engl J Med 368:610–622CrossRefPubMedGoogle Scholar
  22. 22.
    Schupbach WM, Chastan N, Welter ML et al (2005) Stimulation of the subthalamic nucleus in Parkinson’s disease: a 5 year follow up. J Neurol Neurosurg Psychiatry 76:1640–1644CrossRefPubMedGoogle Scholar
  23. 23.
    Simonin C, Tir M, Devos D et al (2009) Reduced levodopa-induced complications after 5 years of subthalamic stimulation in Parkinson’s disease: a second honeymoon. J Neurol 256:1736–1741CrossRefPubMedGoogle Scholar
  24. 24.
    Thobois S, Ardouin C, Lhommee E et al (2010) Non-motor dopamine withdrawal syndrome after surgery for Parkinson’s disease: predictors and underlying mesolimbic denervation. Brain 133:1111–1127CrossRefPubMedGoogle Scholar
  25. 25.
    Thobois S, Lhommee E, Klinger H et al (2013) Parkinsonian apathy responds to dopaminergic stimulation of D2/D3 receptors with piribedil. Brain 136:1568–1577CrossRefPubMedGoogle Scholar
  26. 26.
    Voges J, Hilker R, Botzel K et al (2007) Thirty days complication rate following surgery performed for deep-brain-stimulation. Mov Disord 22:1486–1489CrossRefPubMedGoogle Scholar
  27. 27.
    Volkmann J, Daniels C, Witt K (2010) Neuropsychiatric effects of subthalamic neurostimulation in Parkinson disease. Nat Rev Neurol 6:487–498PubMedGoogle Scholar
  28. 28.
    Williams A, Gill S, Varma T et al (2010) Deep brain stimulation plus best medical therapy versus best medical therapy alone for advanced Parkinson’s disease (PD SURG trial): a randomised, open-label trial. Lancet Neurol 9:581–591PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Witt K, Daniels C, Reiff J et al (2008) Neuropsychological and psychiatric changes after deep brain stimulation for Parkinson’s disease: a randomised, multicentre study. Lancet Neurol 7:605–614CrossRefPubMedGoogle Scholar
  30. 30.
    Witt K, Granert O, Daniels C et al (2013) Relation of lead trajectory and electrode position to neuropsychological outcomes of subthalamic neurostimulation in Parkinson’s disease: results from a randomized trial. Brain 136:2109–2119CrossRefPubMedGoogle Scholar
  31. 31.
    Zibetti M, Merola A, Rizzi L et al (2011) Beyond nine years of continuous subthalamic nucleus deep brain stimulation in Parkinson’s disease. Mov Disord 26:2327–2334CrossRefPubMedGoogle Scholar
  32. 32.
    Moro E, Lozano AM, Pollak P et al. (2010) Long-term results of a multicenter study on subthalamic and pallidal stimulation in Parkinson’s disease. Mov Disord 25:578–586CrossRefPubMedGoogle Scholar
  33. 33.
    Romito LM, Contarino MF, Vanacore N et al. (2009) Replacement of dopaminergic medication with subthalamic nucleus stimulation in Parkinson’s disease: long-term observation. Mov Disord 24:557–563CrossRefPubMedGoogle Scholar
  34. 34.
    Piboolnurak P, Lang AE, Lozano AM et al. (2007) Levodopa response in long-term bilateral subthalamic stimulation for Parkinson’s disease. Mov Disord 22:990–997CrossRefPubMedGoogle Scholar
  35. 35.
    Wider C, Pollo C, Bloch J et al. (2008) Long-term outcome of 50 consecutive Parkinson’s disease patients treated with subthalamic deep brain stimulation. Parkinsonism Relat Disord 14:114–119CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Klinik für NeurologieUniversitätsklinikum Schleswig-Holstein, Campus Kiel, Christian Albrechts Universität KielKielDeutschland

Personalised recommendations