Advertisement

Der Nervenarzt

, Volume 84, Issue 3, pp 283–293 | Cite as

Neurotheologie

Neurobiologische Modelle religiöser Erfahrungen
  • T. Passie
  • J. Warncke
  • T. Peschel
  • U. Ott
Übersichten
  • 1.1k Downloads

Zusammenfassung

Religionen sind evolutionäre, aufgrund bestimmter Funktionalitäten selektierte soziale und kulturelle Phänomene. Sie imponieren heutzutage als kulturtragende Glaubens- und Normsysteme wie auch gesellschaftliche Institutionen. Nicht erst in neuester Zeit werden Ursprung und Wirkkraft von Religionen auf ein Spektrum subjektiver Erlebnisphänomene (religiöse Erfahrungen) zurückgeführt. Religiöse Erfahrungen sind vielfältig und weit verbreitet. Das im Kern am meisten konsistente und interkulturell übereinstimmende religiöse Erlebnis ist das mystische Erlebnis (Unio mystica). Nur diese Form religiöser Erfahrung (und die Gebetserfahrung) wurden bisher neurobiologisch genauer untersucht. Zur Erzeugung wie auch Erforschung mystischer Erlebnisse ist eine Reihe von Methoden anwendbar. Dieser Artikel gibt eine Übersicht zu den bedeutendsten Forschungsansätzen und Hypothesen. Einige empirische Ergebnisse liefern interessante Ansätze für Hypothesenbildungen zur neurobiologischen Erklärung religiöser Erfahrungen. Die neurobiologischen Ergebnisse bzw. Hypothesen sind in vielem aber noch inkonsistent und vorläufig. Ein interessantes Ergebnis dieser Übersicht ist die Erkenntnis, dass es eine ganze Reihe neurophysiologisch unterschiedlicher Bedingungsgefüge gibt, aus denen religiöse Erfahrungen mit ähnlichem Erlebnischarakter resultieren können.

Schlüsselwörter

Religion Religiöse Erfahrungen Ekstase Neurobiologie Neurophysiologie 

Neurotheology

Neurobiological models of religious experience

Abstract

Religions are evolutionary selected social and cultural phenomena. They represent today belief and normative systems on which the main parts of our culture are based. For a long time religions have been seen as mainly originating from a spectrum of religious experiences. These include a broad spectrum of experiences and are astonishingly widespread in the population. The most consistent and transculturally uniform religious experiences are the mystical experiences. Only these (and the prayer experience) have factually been researched in detail neurobiologically. This article presents a review of empirical results and hypothetical approaches to explain mystical religious experiences neurobiologically. Some of the explanatory hypotheses possess logical evidence, some are even supported by neurobiological studies, but all of them have their pitfalls and are at best partially consistent. One important insight from the evidence reviewed here is that there may be a whole array of different neurophysiological conditions which may result in the same core religious mystical experiences.

Keywords

Religion Religious experience Ecstasy Neurobiology Neurophysiology 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Boyer P (2003) Religious thought and behavior as by-products of brain function. Trends Cogn Sci 7:119–124PubMedCrossRefGoogle Scholar
  2. 2.
    Boyer P (2004) Und Mensch schuf Gott. Klett-Cotta, StuttgartGoogle Scholar
  3. 3.
    Eliade M (2009) Geschichte der religiösen Ideen, 4 Bde. Herder, FreiburgGoogle Scholar
  4. 4.
    Müller S, Walter H (2010) Religiöse Gehirne – Neurotheologie und die neurowissenschaftliche Erforschung religiöser Erfahrungen. Nervenheilkunde 29:684–689Google Scholar
  5. 5.
    Forman KC (Hrsg) (1990) The problem of pure consciousness. Oxford Univ Press, New YorkGoogle Scholar
  6. 6.
    Scharfstein BA (1977) Mystical experience. Wiley BlackwellGoogle Scholar
  7. 7.
    Kokoszka A (1992/93) Occurrence of altered states of consciousness among students: Profoundly and superficially altered states in wakefulness. Imagin Cog Personal 12:231–247CrossRefGoogle Scholar
  8. 8.
    Palmer J (1979) A community mail survey of psychic experiences. J Am Soc Psych Res 73:221–251Google Scholar
  9. 9.
    Greeley A, McCready W (1979) Are we a nation of mystics? In: Goleman D, Davidson RC (Hrsg) Consciousness: brain, states of awareness and mysticism. New York, S 178–183Google Scholar
  10. 10.
    Huber S, Klein C (2008) Kurzbericht zu einzelnen Ergebnissen der internationalen Durchführung des Religionsmonitors der Bertelsmann-Stiftung. www.bertelsmann-stiftung.de/cps/rde/xbcr/SID-37FD4003–12F8F751/bst/kurzbericht_internationale_ergebnisse.pdfGoogle Scholar
  11. 11.
    Austin JH (1998) Zen and the brain. MIT Press, CambridgeGoogle Scholar
  12. 12.
    Joseph R (Hrsg) (2003) Neurotheology. Univ Press, San Jose, CAGoogle Scholar
  13. 13.
    McKinney LO (1994) Neurotheology. American Institute for Mindfulness, CambridgeGoogle Scholar
  14. 14.
    Drewermann E (2006ff) Atem des Lebens. Die moderne Neurologie und die Frage nach Gott, Bd. 1ff. Patmos, DüsseldorfGoogle Scholar
  15. 15.
    Newberg A (2010) Principles of Neurotheology. Ashgate, Farnham und BurlingtonGoogle Scholar
  16. 16.
    Newberg A, d’Aquili E (2001) Why god won’t go away. Ballantine, New YorkGoogle Scholar
  17. 17.
    Huxley A (1962) Island. Chatto & Windus, LondonGoogle Scholar
  18. 18.
    Stace WT (1960) Mysticism and philosophy. New YorkGoogle Scholar
  19. 19.
    Brown HF (1895) Symonds JA (Hrsg) A Biography. LondonGoogle Scholar
  20. 20.
    Schüttler G (1974) Die Erleuchtung im Zen-Buddhismus. Alber, FreiburgGoogle Scholar
  21. 21.
    Fischer R (1971) A cartography of the ecstatic and meditative states. Science 174:897–904PubMedCrossRefGoogle Scholar
  22. 22.
    Gellhorn E (1966) Principles of autonomic-somatic integrations. University of Minnesota Press, MinneapolisGoogle Scholar
  23. 23.
    Goldstein L, Murphee HB, Pfeiffer CC (1963) Quantitative electroencephalography in man as a measure of CNS stimulation. Ann N Y Acad Sci 107:1045–1056PubMedCrossRefGoogle Scholar
  24. 24.
    Persinger MA (1983) Religious and mystical experiences as artifacts of temporal lobe function: a general hypothesis. Percept Mot Skills 57:1255–1262PubMedCrossRefGoogle Scholar
  25. 25.
    Persinger MA (1987) Neuropsychological bases of god beliefs. Praeger, New YorkGoogle Scholar
  26. 26.
    Saver JL, Rabin J (1997) The neural substrates of religious experience. J Neuropsychiatry Clin Neurosci 9:498–510PubMedGoogle Scholar
  27. 27.
    Niemann U, Wagner M (2005) Visionen. Pustet, RegensburgGoogle Scholar
  28. 28.
    Cook CM, Persinger MA (1997) Experimental induction of the „sensed presence“ in normal subjects and an exceptional subject. Perceptual Motor Skills 85:683–693Google Scholar
  29. 29.
    Horgan J (2003) Rational Mysticism Houghton Mufflin. Boston, New YorkGoogle Scholar
  30. 30.
    Granqvist P, Fredrikson M, Unge P et al (2005) Sensed presence and mystical experiences are predicted by suggestibility, not by the application of transcranial weak complex magnetic fields. Neurosci Lett 379:1–6PubMedCrossRefGoogle Scholar
  31. 31.
    Persinger MA, Koren SA (2005) A response to Granqvist et al. „Sensed presence and mystical experiences are predicted by suggestibility, not by the application of transcranial weak magnetic fields“. Neurosci Lett 380:346–347PubMedCrossRefGoogle Scholar
  32. 32.
    Newberg A, d’Aquili E (1993) Religious and mystical states: a neuropsychological model. Zygon 28:177–200CrossRefGoogle Scholar
  33. 33.
    Newberg A, Alavi A, Baime M et al (2001) The measurement of regional cerebral blood flow during the complex cognitive task of meditation: a preliminary SPECT study. Psychiatry Res 106:113–22PubMedCrossRefGoogle Scholar
  34. 34.
    Karnath HO, Farber S, Himmelbach M (2001) Spatial awareness is a function of the temporal, not the posterior parietal lobe. Nature 411:950–953PubMedCrossRefGoogle Scholar
  35. 35.
    Andreson J (2001) Meditation meets behavioural medicine. J Consciou Stud 7:32–44Google Scholar
  36. 36.
    Ellison A, Schindler I, Pattison LL, Milner AD (2004) An exploration of the role of the superior temporal gyrus in visual search and spatial perception using TMS. Brain 127:2307–2315PubMedCrossRefGoogle Scholar
  37. 37.
    Karnath HO, Fruhmann Berger M, Küker W, Rorden C (2004) The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. Cereb Cortex 14:1164–1172PubMedCrossRefGoogle Scholar
  38. 38.
    Beauregard M, Paquette V (2006) Neural correlates of a mystical experience in Carmelite nuns. Neurosci Lett 406:186–90CrossRefGoogle Scholar
  39. 39.
    Beauregard M, Paquette V (2008) EEG activity in Carmelite nuns during a mystical experience. Neurosci Lett 17:1–4CrossRefGoogle Scholar
  40. 40.
    Azari NP, Nickel J, Wunderlich G et al (2001) Neural correlates of religious experience. Eur J Neurosci 13:1649–1652PubMedCrossRefGoogle Scholar
  41. 41.
    Azari NP, Missimer J, Seitz RJ (2001) Religious experience and emotion: Evidence for distinctive cognitive neural patterns. Int J Psychol Relig 15:263–281CrossRefGoogle Scholar
  42. 42.
    Newberg A, Pourdehnad M, Alavi A, d’Aquili EG (2003) Cerebral blood flow during meditative prayer: preliminary findings and methodological issues. Percept Mot Skills 97:625–630PubMedGoogle Scholar
  43. 43.
    Lysebeth AV (1972) Pranayama – Die große Kraft des Atems. Barth, WeilheimGoogle Scholar
  44. 44.
    Katz R (1985) Num – Heilen in Ekstase. Ansata, InterlakenGoogle Scholar
  45. 45.
    Friedlander S (1992) The whirling dervishes. State University of New York Press, New YorkGoogle Scholar
  46. 46.
    Weimann G (1968) Das Hyperventilationssyndrom. Urban & Schwarzenberg, MünchenGoogle Scholar
  47. 47.
    Sikter A, Frecska E, Braun IM et al (2007) The role of hyperventilation: hypocapnia in the pathomechanism of panic disorder. Rev Bras Psiquiatr 29:375–379PubMedCrossRefGoogle Scholar
  48. 48.
    Nardi AE, Lopes FL, Valenca AM et al (2004) Psychopathological description of hyperventilation-induced panic attacks: a comparison with spontaneous panic attacks. Psychopathology 37:29–35PubMedCrossRefGoogle Scholar
  49. 49.
    Zandbergen J, Aalst V van, Loof C de et al (1993) No chronic hyperventilation in panic disorder patients. Psychiatry Res 47:1–6PubMedCrossRefGoogle Scholar
  50. 50.
    Stadler G, Steurer J, Dur P et al (1995) Elektrolytveränderungen während und nach willkürlicher Hyperventilation. Praxis (Bern 1994) 84:328–334Google Scholar
  51. 51.
    Kety SS, Schmidt CF (1946) The Effects of active and passive hyperventilation on cerebral blood flow, cerebral oxygen consumption, cardiac output, and blood pressure of normal young men. J Clin Invest 25:107–119CrossRefGoogle Scholar
  52. 52.
    Bednarczyk EM, Rutherford WF, Leisure GP et al (1990) Hyperventilation induced reduction in cerebral blood flow: assessment by positron emission tomography. DICP 24:456–460PubMedGoogle Scholar
  53. 53.
    Posse S, Olthoff U, Weckesser M et al (1997) Regional dynamic signal changes during controlled hyperventilation assessed with blood oxygen level-dependent functional MR imaging. Am J Neuroradiol 18:1763–1770PubMedGoogle Scholar
  54. 54.
    Passie T, Hartmann U, Schneider U, Emrich HM (2003) On the function of groaning and hyperventilation during sexual intercourse: intensification of sexual experience by altering brain metabolism through hypocapnia. Med Hypotheses 60:660–663PubMedCrossRefGoogle Scholar
  55. 55.
    Sassinek T (2010) Effekte langanhaltender, willkürlicher Hyperventilation auf Blutgase, Hirnperfusion und Bewusstsein: Eine fMRT-Studie mit ASL-Technik. Med Diss Universität GießenGoogle Scholar
  56. 56.
    Passie T, Goetzke A, Pleske R et al (2008) Alterations of affectivity, state of consciousness and blood gases during forced and prolonged voluntary hyperventilation. Neuropsychobiology (eingereicht)Google Scholar
  57. 57.
    Van der Malsburg C (1994) The correlation theory of brain function. In: Domany E, Hemmen JL van, Schulten K (Hrsg) Models of neural networks vol. II. Springer, Berlin, S 95–119Google Scholar
  58. 58.
    Gray CM, Konig P, Engel AK, Singer W (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–337PubMedCrossRefGoogle Scholar
  59. 59.
    Ott U (2000) Merkmale der 40-Hz-Aktivität im EEG während Ruhe, Kopfrechnen und Meditation. Lang, Frankfurt am MainGoogle Scholar
  60. 60.
    Sheer DE (1989) Sensory and cognitive 40-Hz event-related potentials: behavioural correlates, brain function and clinical application. Basar E, Bullock TH (Hrsg) Brain dynamics: progress and perspectives. Springer, Berlin, S 330–374Google Scholar
  61. 61.
    Lutz A, Greischar LL, Rawlings NB et al (2004) Long-term meditators self-induce high-amplitude gamma synchrony during mental practice. Proc Natl Acad Sci U S A 101:16369–16373PubMedCrossRefGoogle Scholar
  62. 62.
    Stuckey DE, Lawson R, Luna LE (2005) EEG gamma coherence and other correlates of subjective reports during ayahuasca experiences. J Psychoactive Drugs 37:163–78PubMedCrossRefGoogle Scholar
  63. 63.
    Baldeweg T, Spence S, Hirsch SR, Gruzelier J (1998) Gamma-band electroencephalographic oscillations in a patient with somatic hallucinations. Lancet 352:620–621PubMedCrossRefGoogle Scholar
  64. 64.
    Lee KH, Williams LM, Breakspear M, Gordon E (2003) Synchronous gamma activity: a review and contribution to an integrative neuroscience model of schizophrenia. Brain Res Rev 41:57–78PubMedCrossRefGoogle Scholar
  65. 65.
    Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113PubMedCrossRefGoogle Scholar
  66. 66.
    Williams S, Boksa P (2010) Gamma oscillations and schizophrenia. J Psychiatry Neurosci 35:75–77PubMedCrossRefGoogle Scholar
  67. 67.
    Davidson JM (1980) The psychobiology of sexual experience. In: Davidson JM, Davidson RJ (Hrsg) The psychobiology of consciousness. Plenum Press, New York, S 271–332Google Scholar
  68. 68.
    Holstege G, Georgiadis JR, Paans AM et al (2003) Brain activation during human male ejaculation. J Neurosci 23:9185–9193PubMedGoogle Scholar
  69. 69.
    Schultes RE, Hofmann A (1980) Pflanzen der Götter. Hallwag, BernGoogle Scholar
  70. 70.
    Heigl P (1980) Mystik und Drogenmystik. Patmos, DüsseldorfGoogle Scholar
  71. 71.
    Smith H (2000) Cleansing the Doors of Perception. Tarcher/Putnam, New YorkGoogle Scholar
  72. 72.
    Griffiths RR, Richards WA, McCann U, Jesse R (2006) Psilocybin can occasion mystical-type experiences having substantial and sustained personal meaning and spiritual significance. Psychopharmacology 187:268–283PubMedCrossRefGoogle Scholar
  73. 73.
    Shanon B (2002) The antipodes of the mind. Charting the phenomenology of the Ayahuasca experience. Oxford Univ Press, OxfordGoogle Scholar
  74. 74.
    Hood RW (Hrsg) (1994) Handbook of religious experience. Religious Education Press, BirminghamGoogle Scholar
  75. 75.
    Axelrod J (1962) The enzymatic N-methylation of serotonin and other metabolites. J Pharmacol Exp Ther 138:28–33PubMedGoogle Scholar
  76. 76.
    Strassman RJ, Qualls CR, Uhlenhuth EH, Kellner R (1994) Dose-response study of N, N-dimethyltryptamine in humans. II. Subjective effects and preliminary results of a new rating scale. Arch Gen Psychiatry 51:98–108PubMedCrossRefGoogle Scholar
  77. 77.
    Strassman R (2001) DMT – The spirit molecule. Park Street Press, RochesterGoogle Scholar
  78. 78.
    Passie T (2009) Psychedelika, religiöse Erfahrungen und Spiritualität. J Jung 12:71–79Google Scholar
  79. 79.
    Riba J, Romero S, Grasa E et al (2006) Increased frontal and paralimbic activation following ayahuasca, the pan-Amazonian inebriant. Psychopharmacology 186:93–98PubMedCrossRefGoogle Scholar
  80. 80.
    Gouzoulis-Mayfrank E, Schreckenberger M, Sabri O et al (1999) Neurometabolic effects of psilocybin, 3,4-methylenedioxyethylamphetamine (MDE) and d-methamphetamine in healthy volunteers. Neuropsychopharmacology 20:565–581PubMedCrossRefGoogle Scholar
  81. 81.
    Vollenweider FX, Leenders KL, Scharfetter C et al (1997) Positron emission tomography and fluorodeoxyglucose studies of metabolic hyperfrontality and psychopathology in the psilocybin model of psychosis. Neuropsychopharmacology 16:357–372PubMedCrossRefGoogle Scholar
  82. 82.
    Vollenweider FX, Geyer MA (2001) A systems model of altered consciousness: Integrating natural and drug-induced psychosis. Brain Res Bull 56:495–507PubMedCrossRefGoogle Scholar
  83. 83.
    Lachter J, Forster KI, Ruthruff E (2004) Forty-five years after Broadbent (1958): still no identification without attention. Psychol Rev 111:880–913PubMedCrossRefGoogle Scholar
  84. 84.
    Huxley A (1954) Die Pforten der Wahrnehmung. Piper, MünchenGoogle Scholar
  85. 85.
    Schneider U, Leweke FM, Sternemann U et al (1996) Visual 3D illusion: a systems-theoretical approach to psychosis. Eur Arch Psychiatry Clin Neurosci 246:256–260PubMedCrossRefGoogle Scholar
  86. 86.
    Passie T (2007) Bewusstseinszustände: Konzeptualisierung und Messung. LIT, MünsterGoogle Scholar
  87. 87.
    Passie T (2006) Psychische Wirkungen von Halluzinogenen: Objektive und subjektive Perspektiven. In: Emrich HM, Schneider U (Hrsg) Facetten der Sucht. Peter Lang, Frankfurt/M, S 75–96Google Scholar
  88. 88.
    Studerus E, Kometer M, Hasler F, Vollenweider FX (2011) Acute, subacute and long-term subjective effects of psilocybin in healthy humans: a pooled analysis of experimental studies. J Psychopharmacol 20 [Epub ahead of print]Google Scholar
  89. 89.
    Tart C (1975) States of consciousness. Dutton, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Klinik für Psychiatrie, Sozialpsychiatrie und PsychotherapieMedizinische Hochschule HannoverHannoverDeutschland
  2. 2.Bender Institute of NeuroimagingUniversität GießenGießenDeutschland
  3. 3.Institut für Grenzgebiete der Psychologie und PsychohygieneFreiburg i. Br.Deutschland
  4. 4.Senckenbergisches Institut für Geschichte und Ethik in der MedizinUniversität Frankfurt/MainFrankfurt/MainDeutschland

Personalised recommendations