Der Nervenarzt

, Volume 82, Issue 12, pp 1566–1577 | Cite as

Lebensstil und Kognition

Was wissen wir über das alternde und neurodegenerativ veränderte Gehirn?
Übersichten

Zusammenfassung

Epidemiologische Studien konnten zeigen, dass sich regelmäßige körperliche Aktivität und bewusste Ernährung positiv auf die kardiovaskuläre Gesundheit auswirken. Bei chronisch-neurodegenerativen Erkrankungen wie dem idiopathischen Parkinson-Syndrom und dem Morbus Alzheimer wird körperliche Aktivität in Form von Physiotherapie seit langem als symptomatische Begleittherapie eingesetzt. Es wird jedoch zunehmend deutlich, dass freiwillige körperliche Aktivität über den positiven Effekt auf die Motorik hinaus fördernd auf Kognition sowohl im (alternden) gesunden als auch im neurodegenerativ veränderten Gehirn wirkt. Auch das Ernährungsverhalten scheint positive Auswirkungen auf die gesamte Gehirnfunktion auszuüben.

Tierexperimentelle Studien legen nahe, dass die zugrunde liegenden Mechanismen auf eine Verstärkung endogener Plastizität zurückzuführen sein könnten, u. a. durch Aktivierung neuronaler Vorläuferzellen in unterschiedlichen Hirnarealen, die mit besseren funktionellen Leistungen korrelieren. Auch erste experimentelle Studien beim Menschen zeigten, dass sich durch Aktivität oder Ernährungsumstellung eine Ausschüttung neurotropher Faktoren, eine Zunahme des Volumens der grauen Hirnsubstanz in gedächtnisrelevanten Arealen sowie eine verbesserte kognitive Funktion erreichen lässt. Damit eröffnet sich die Möglichkeit, durch Änderungen des Lebensstils Alterungsprozesse und degenerative Prozesse kausal und nichtinvasiv zu beeinflussen. Hiermit stünde potenziell ein sowohl sozioökonomisch als auch ethisch praktikabler therapeutischer Ansatz bei neurodegenerativen Erkrankungen zur Verfügung.

Der Beitrag fasst die bisherigen Entwicklungen auf diesem Gebiet aus tierexperimentellen Studien und Untersuchungen am Menschen zusammen. Dabei werden mögliche zelluläre und molekulare Grundlagen aufgezeigt sowie translationale klinische Studien und erste klinische Applikationen vorgestellt.

Schlüsselwörter

Körperliche Aktivität Ernährung Kognition Hippokampus Plastizität 

Lifestyle and cognition

What do we know from the aging and neurodegenerative brain?

Summary

Epidemiological studies demonstrated positive effects of continuous physical activity and balanced diet on cardiovascular fitness. In chronic neurodegenerative disorders, e.g. Parkinson’s disease and Alzheimer’s disease, physical activity has become a successful supportive symptomatic therapy. However, it has become evident that physical activity not only improves motor symptoms but also has high impact on cognition in both (elderly) healthy brain and neurodegenerative alterations in the CNS. Nutrition also has been reported to exert positive effects on brain function.

Animal studies indicate an increased endogenous plasticity as the underlying mechanism in terms of activation of neuronal precursor cells in different brain areas, leading to improved brain function.

First experimental studies in humans also show that physical activity and balanced nutrition increase the release of neurotrophic factors in the brain, increase the volume of grey matter in learning- and memory-associated brain regions and improve cognitive function. This phenomenon opens up noninvasive causal therapeutic options in neurodegenerative disorders and during aging-associated cognitive decline by inducing changes in lifestyle. This option could provide a socioeconomically and ethically reasonable treatment for neurodegenerative disorders.

The presented article summarizes the current knowledge from animal experiments and studies in humans. It provides an overview of potential cellular and molecular candidate mechanisms and discusses novel translational clinical studies and first clinical applications.

Keywords

Physical activity Nutrition Cognition Hippocampus Plasticity 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Brookmeyer R, Gray S, Kawas C (1998) Projections of Alzheimer’s disease in the United States and the public health impact of delaying disease onset. Am J Public Health 88(9):1337–1342PubMedCrossRefGoogle Scholar
  2. 2.
    Lowin A, Knapp M, McCrone P (2001) Alzheimer’s disease in the UK: comparative evidence on cost of illness and volume of health services research funding. Int J Geriatr Psychiatry 16(12):1143–1148PubMedCrossRefGoogle Scholar
  3. 3.
    Jönsson L, Berr C (2005) Cost of dementia in Europe. Eur J Neurol 12(Suppl 1):50–53PubMedCrossRefGoogle Scholar
  4. 4.
    Olanow CW (2009) Can we achieve neuroprotection with currently available anti-parkinsonian interventions? Neurology 72(Suppl 7):S59–S64PubMedCrossRefGoogle Scholar
  5. 5.
    Förstl H (2009) Neuro-enhancement. Brain doping. Nervenarzt 80(7):840–846PubMedCrossRefGoogle Scholar
  6. 6.
    Van Praag H, Schinder AF, Christie BR et al (2002) Functional neurogenesis in the adult hippocampus. Nature 415(6875):1030–1034CrossRefGoogle Scholar
  7. 7.
    Jessberger S, Kempermann G (2003) Adult-born hippocampal neurons mature into activity-dependent responsiveness. Eur J Neurosci 18(10):2707–2712PubMedCrossRefGoogle Scholar
  8. 8.
    Steiner B, Kronenberg G, Jessberger S et al (2004) Differential regulation of gliogenesis in the context of adult hippocampal neurogenesis in mice. Glia 46(1):41–52PubMedCrossRefGoogle Scholar
  9. 9.
    Steiner B, Kupsch A, Siebert E et al (2008) Unilateral lesion of the subthalamic nucleus transiently provokes bilateral subacute glial cell proliferation in the adult rat substantia nigra. Neurosci Lett 430(2):103–108PubMedCrossRefGoogle Scholar
  10. 10.
    Cameron HA, Woolley CS, McEwen BS, Gould E (1993) Differentiation of newly born neurons and glia in the dentate gyrus of the adult rat. Neuroscience 56:337–344PubMedCrossRefGoogle Scholar
  11. 11.
    Gould E, Tanapat P, McEwen BS et al (1998) Proliferation of granule cells precursors in the dentate gyrus of adult monkeys is diminished by stress. Proc Natl Acad Sci U S A 95:3168–3171PubMedCrossRefGoogle Scholar
  12. 12.
    Eriksson PS, Perfilieva E, Björk-Eriksson T et al (1998) Neurogenesis in the adult human hippocampus. Nat Med 4(11):1313–1317PubMedCrossRefGoogle Scholar
  13. 13.
    Maguire EA, Gadian DG, Johnsrude IS et al (2000) Navigation-related structural change in the hippocampi of taxi drivers. Proc Natl Acad Sci U S A 97(8):4398–4403PubMedCrossRefGoogle Scholar
  14. 14.
    Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386(6624):493–495PubMedCrossRefGoogle Scholar
  15. 15.
    Kempermann G, Kuhn HG, Gage FH (1998) Experience-induced neurogenesis in the senescent dentate gyrus. J Neurosci 18(9):3206–3212PubMedGoogle Scholar
  16. 16.
    Praag H van, Kempermann G, Gage FH (1999) Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nat Neurosci 2(3):266–270PubMedCrossRefGoogle Scholar
  17. 17.
    Lie DC, Dziewczapolski G, Willhoite AR et al (2002) The adult substantia nigra contains progenitor cells with neurogenic potential. J Neurosci 22(15):6639–6649PubMedGoogle Scholar
  18. 18.
    Zhao M, Momma S, Delfani K et al (2003) Evidence for neurogenesis in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 100(13):7925–7930PubMedCrossRefGoogle Scholar
  19. 19.
    Frielingsdorf H, Schwarz K, Brundin P, Mohapel P (2004) No evidence for new dopaminergic neurons in the adult mammalian substantia nigra. Proc Natl Acad Sci U S A 101(27):10177–10182PubMedCrossRefGoogle Scholar
  20. 20.
    Steiner B, Winter C, Hosman K et al (2006) Enriched environment induces cellular plasticity in the adult substantia nigra and improves motor behavior function in the 6-OHDA rat model of Parkinson’s disease. Exp Neurol 199(2):291–300PubMedCrossRefGoogle Scholar
  21. 21.
    Wu CW, Chang YT, Yu L et al (2008) Exercise enhances the proliferation of neural stem cells and neurite growth and survival of neuronal progenitor cells in dentate gyrus of middle-aged mice. J Appl Physiol 105(5):1585–1594PubMedCrossRefGoogle Scholar
  22. 22.
    Mirochnic S, Wolf S, Staufenbiel M, Kempermann G (2009) Age effects on the regulation of adult hippocampal neurogenesis by physicaö activity and environmental enrichment in the APP23 mouse model of Alzheimer disease. Hippocampus 19(10):1008–1018PubMedCrossRefGoogle Scholar
  23. 23.
    Blackmore DG, Golmohammadi MG, Large B et al (2009) Exercise increases neural stem cell number in a growth hormone-dependent mannere, augmenting the regenerative response in aged mice. Stem Cells 27(8):2044–2052PubMedCrossRefGoogle Scholar
  24. 24.
    Carro E, Trejo JL, Busiguina S, Torres-Aleman I (2001) Circulating insulin-growth factor I mediates the protective effects of physical exercise against brain insults of different etiology and anatomy. J Neurosci 21(15):5678–5684PubMedGoogle Scholar
  25. 25.
    Chae CH, Jung SL, An SH et al (2009) Treadmill exercise improves cognitive function and facilitates nerve growth factor signalling by activating mitogen-activated protein kinase/extracellular signal-regulated kinase 1/2 in the streptozotocin-induced diabetic rat hippocampus. Neuroscience 164(4):1665–1673PubMedCrossRefGoogle Scholar
  26. 26.
    Kim SE, Ko IG, Kim BG et al (2010) Treadmill exercise prevents aging-induced failure of memory through an increase in neurogenesis and suppression of apoptosis in rat hippocampus. Exp Gerontol 45(5):357–365PubMedCrossRefGoogle Scholar
  27. 27.
    Van Praag H, Shubert T, Zhao C, Gage FH (2005) Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci 25(38):8680–8685CrossRefGoogle Scholar
  28. 28.
    Yoon MC, Shin MS, Kim TS et al (2007) Treadmill exercise suppresses nigrostriatal dopaminergic neuronal loss in 6-hydroxydopamine-induced Parkinson’s rats. Neurosci Lett 423(1):12–17PubMedCrossRefGoogle Scholar
  29. 29.
    Tahiri N, Yasuhara T, Shingo T et al (2010) Exercise exerts neuroprotective effects on Parkinson’s disease model of rats. Brain Res 1310:200–207CrossRefGoogle Scholar
  30. 30.
    Petzinger GM, Walsh JP, Akopian G et al (2007) Effects of treadmill exercise on dopaminergic transmission in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse model of basal ganglia injury. J Neurosci 27(20):5291–5300PubMedCrossRefGoogle Scholar
  31. 31.
    Gerecke KM, Jiao Y, Pani A et al (2010) Exercise protects against MPTP-induced neurotoxicity in mice. Brain Res 1341:72–83PubMedCrossRefGoogle Scholar
  32. 32.
    Höglinger GU, Rizk P, Muriel MP et al (2004) Dopamine depletion impairs precursor cell proliferation in Parkinson disease. Nat Neurosci 7:726–735PubMedCrossRefGoogle Scholar
  33. 33.
    Santarelli L, Saxe M, Gross C et al (2003) Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301(5634):805–809PubMedCrossRefGoogle Scholar
  34. 34.
    Meeusen R, De Meirleir K (1995) Exercise and brain neurotransmission. Sports Med 20(3):160–188PubMedCrossRefGoogle Scholar
  35. 35.
    Sutoo D, Akiyama K (2003) Regulation of brain function by exercise. Neurobiol Dis 13(1):1–14PubMedCrossRefGoogle Scholar
  36. 36.
    Fisher BE, Petzinger GM, Nixon K et al (2004) Exercise-induced behavioral recovery and neuroplasticity in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine-lesioned mouse basal ganglia. J Neurosci Res 77(3):378–390PubMedCrossRefGoogle Scholar
  37. 37.
    Baria G (2004) Free radicals and aging. Trends Neurosci 27(10):595–600CrossRefGoogle Scholar
  38. 38.
    Lee J, Duan W, Mattson MP (2002) Evidence that brain-derived neuerotrophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampus of adult mice. J Neurochem 82(6):1367–1375PubMedCrossRefGoogle Scholar
  39. 39.
    Masoro EJ (2000) Caloric restriction and aging: an update. Exp Gerontol 35(3):299–305PubMedCrossRefGoogle Scholar
  40. 40.
    Mattson MP (2003a) Gene-diet interactions in brain aging and neurodegenerative disorders. Ann Intern Med 139(5Pt2):441–444PubMedGoogle Scholar
  41. 41.
    Mattson MP, Duan W, Chan SL et al (2002) Neuroprotective and neurorestaurative signal transduction mechanisms in brain aging: modification by genes, diet and behaviour. Neurobiol Aging 23(5):695–705PubMedCrossRefGoogle Scholar
  42. 42.
    Bick-Sander A, Steiner B, Wolf SA et al (2006) Running in pregnancy transiently increases postnatal hippocampal neurogenesis in the offspring. Proc Natl Acad Sci U S A 103(10):3852–3857PubMedCrossRefGoogle Scholar
  43. 43.
    Fabel K, Fabel K, Tam B et al (2003) VEGF is necessary for exercise-induced adult hippocampal neurogenesis. Eur J Neurosci 18(10):2803–2812PubMedCrossRefGoogle Scholar
  44. 44.
    Yasuhara T, Shing T, Muraoka K et al (2005) Neurorescue effects of VEGF on a rat model of Parkinson’s disease. Brain Res 1053(1–2):10–18Google Scholar
  45. 45.
    Zigmond MJ, Cameron JL, Leak RK et al (2009) Triggering endogenous neuroprotective processes through exercise in models of dopamine deficiency. Parkinsonism Relat Disord (Suppl 3):S42–S45CrossRefGoogle Scholar
  46. 46.
    Llorens-Martin M, Torres-Aleman I, Trejo JL (2010) Exercise modulates insulin-like growth factor 1-dependent and independent effects on adult hippocampal neurogenesis and behaviour. Mol Cell Neurosci 44(2):109–117PubMedCrossRefGoogle Scholar
  47. 47.
    Al-Jarrah M, Pothakos K, Novikova L et al (2007) Endurance exercise promotes cardiorespiratory rehabilitation without neurorestauration in the chronic mouse model of parkinsonism with severe neurodegeneration. Neuroscience 149(1):28–37PubMedCrossRefGoogle Scholar
  48. 48.
    Pothakos K, Kurz MJ, Lau YS (2009) Restorative effects of endurance exercise on behavioral deficits in the chronic mouse model of Parkinson’s disease with severe neurodegeneration. BMC Neurosci 10:6PubMedCrossRefGoogle Scholar
  49. 49.
    Wolf SA, Kronenberg G, Lehmann K et al (2006) Cognitive and physical activity differently modulate disease progression in the amyloid precursor protein (APP)-23 model of Alzheimer’s dfisease. Biol Psychiatry 60(12):1314–1323PubMedCrossRefGoogle Scholar
  50. 50.
    Laurin D, Verreault R, Lindsay J et al (2001) Physical activity and risk of cognitive impairment and dementia in elderly persons. Arch Neurol 58:498–504PubMedCrossRefGoogle Scholar
  51. 51.
    Rogers RL, Meyer JS, Mortel KF (1990) After reaching retirement age physical activity sustains cerebral perfusion and cognition. J Am Geriatr Soc 38:123–128PubMedGoogle Scholar
  52. 52.
    Van Gelder BM, Tijhuis MA, Kalmijn S et al (2004) Physical activity in relation to cognitive decline in elderly men: the FINE Study. Neurology 63:2316–2321Google Scholar
  53. 53.
    Abbott RD, White LR, Ross GW et al (2004) Walking and dementia in physically capable elderly men. JAMA 292:1447–1453PubMedCrossRefGoogle Scholar
  54. 54.
    Chen H, Zhang SM, Schwarzschikd MA et al (2005) Physical activity and the risk of Parkinson disease. Neurology 64:664–669PubMedCrossRefGoogle Scholar
  55. 55.
    Weuve J, Kang JH, Manson JE et al (2004) Physical activity, including walking, and cognitive function in older women. JAMA 292:1454–1461PubMedCrossRefGoogle Scholar
  56. 56.
    Larson EB, Wang L, Bowen JD et al (2006) Exercise is associated with reduced risk for incident dementia among persons 65 years of age and older. Ann Intern Med 144(2):73–81PubMedGoogle Scholar
  57. 57.
    Sturman MT, Morris MC, Mendes de Leon CF et al (2005) Physical activity, cognitive activity, and cognitive decline in a biracial community population. Arch Neurol 62(11):1750–1754PubMedCrossRefGoogle Scholar
  58. 58.
    Verghese J, Lipton RB, Katz MJ et al (2003) Leisure activities and the risk of dementia in the elderly. N Engl J Med 348(25):2508–2516PubMedCrossRefGoogle Scholar
  59. 59.
    Kalmijn S, Janssen JA, Pols HA et al (2000) A prospective study on circulating insulin-like growth factor (IGF-I), IGF-binding proteins, and cognitive function in the elderly. J Clin Endocrinol Metab 85(12):4551–4555PubMedCrossRefGoogle Scholar
  60. 60.
    Cotman CW, Berchtold NC (2002) Exercise: a behavioural intervention to enhance brain health and plasticity. TINS 26(6):295–301Google Scholar
  61. 61.
    Colcombe S, Kramer AF (2003) Fitness effects on the cognitive function of older adults: a meta-analytic study. Psychol Sci 14(2):125–130PubMedCrossRefGoogle Scholar
  62. 62.
    Colcombe SJ, Kramer AF, Erickson KI et al (2004) Cardiovascular fitness, cortical plasticity, and aging. Proc Natl Acad Sci U S A 101:3316–3321PubMedCrossRefGoogle Scholar
  63. 63.
    Colcombe SJ, Kramer AF, Erickson KI, Scalf P (2005) The implications of cortical recruitment and brain morphology for individual differences in inhibitory function in aging humans. Psychol Aging 20(3):363–375PubMedCrossRefGoogle Scholar
  64. 64.
    Pereira AC, Huddleston DE, Brickman AM et al (2007) An in vivo correlate of exercise-induced neurogenesis in the adult dentate gyrus. Proc Natl Acad Sci U S A 104(13):5638–5643PubMedCrossRefGoogle Scholar
  65. 65.
    Ruschweyh R, Willemer C, Kruger C et al (2009) Physical activity and memory functions: An interventional study. Neurobiol Aging [Epub ahead of print]Google Scholar
  66. 66.
    Flöel A, Ruscheweyh R, Krüger K et al (2010) Physical activity and memory functions: are neurotrophins and cerebral gray matter volume the missing link? Neuroimage 49(3):2756–2763PubMedCrossRefGoogle Scholar
  67. 67.
    Gold SM, Schulz KH, Hartmann S et al (2003) Basal serum levels and reactivity of nerve growth factor and brain-derived neurotrophic factor to standardized acute exercise in multiple sclerosis and controls. J Neuroimmunol 138(1–2):99–105Google Scholar
  68. 68.
    Winter B, Breitenstein C, Mooren F et al (2006) Faster running – faster and better learning: A single bout of intense exercise improves word learning. Neurobiol Learn Mem 87(4):597–609PubMedCrossRefGoogle Scholar
  69. 69.
    Bodles AM, Barger SW (2004) Cytokines and the aging brain – what we don’t know might help us. Trends Neurosci 27(10):621–626PubMedCrossRefGoogle Scholar
  70. 70.
    Bruce-Keller AJ, Umberger G, McFall R, Mattson MP (1999) Food restriction reduces brain damage and improves behavioural outcome following excitotoxic and metabolic insults. Ann Neurol 45(1):8–15PubMedCrossRefGoogle Scholar
  71. 71.
    Duan W, Guo Z, Jiang H et al (2003) Dietary restriction normalizes glucose metabolism and BDNF levels, slows disease progression, and increases survival in huntingtin mutant mice. Proc Natl Acad Sci U S A 100(5):2911–2916PubMedCrossRefGoogle Scholar
  72. 72.
    Duan W, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration improve behavioural oiutcome and reduce degeneration of dopaminergic neurons in models of Parkinson’s disease. J Neurosci Res 57(2):195–206PubMedCrossRefGoogle Scholar
  73. 73.
    Mattson MP (2000) Neuroprotective signalling and the aging brain: take away my food and let me run. Brain Res 886(1–2):47–53Google Scholar
  74. 74.
    Mattson MP, Perry T, Greig NH (2003) Learning from the gut. Nat Med 9(9):1113–1115PubMedCrossRefGoogle Scholar
  75. 75.
    Weindruch R, Sohal RS (1997) Seminars in medicine of the Beth Israel Deaconess Medical Center. Calorioc intake and aging. N Engl J Med 337(14):986–994PubMedCrossRefGoogle Scholar
  76. 76.
    Yu ZF, Mattson MP (1999) Dietary restriction and 2-deoxyglucose administration reduce focal ischemic brain damage and improve behavioural outcome: evidence for a preconditioning mechanism. J Neurosci Res 57(6):830–839PubMedCrossRefGoogle Scholar
  77. 77.
    Mattson MP, Duan W, Wan R, Guo Z (2004) Prophylactic activation of neuroprotective stress response pathways by dietary and behavioural manipulations. NeuroRx 1(1):111–116PubMedCrossRefGoogle Scholar
  78. 78.
    Ingram DK, Weindruch R, Spangler EL et al (1987) Dietary restriction benefits learning and motor performance of aged mice. J Gerontol 42(1):78–81PubMedGoogle Scholar
  79. 79.
    Stewart J, Mitchell J, Kalant N (1989) The effects of life-long food restriction on spatial memory in young and age Fisher 344 rats measured in the eight-arm radial and the Morris water mazes. Neurobiol Aging 10(6):669–675PubMedCrossRefGoogle Scholar
  80. 80.
    Fontán-Lozano A, Sáez-Cassanelli JL, Inda MC et al (2007) Caloric restriction increases learning consolidation on NR2B subunits of the NMDA receptor. J Neurosci 27(38):10185–10195PubMedCrossRefGoogle Scholar
  81. 81.
    Farr SA, Yamada KA, Butterfield DA et al (2008) Obesity and hypertriglycerdidemia produce cognitive impairment. Endocrinology 149(5):2628–2636PubMedCrossRefGoogle Scholar
  82. 82.
    Bellush LL, Wright AM, Walker JP et al (1996) Caloric restriction and spatial learning in old mice. Physiol Behav 60(2):541–547PubMedCrossRefGoogle Scholar
  83. 83.
    Yanai S, Okaichi Y, Okaichi H (2004) Long-term dietary restriction causes negative effects on cognitive functions in rats. Neurobiol Aging 25(3):325–332PubMedCrossRefGoogle Scholar
  84. 84.
    Maswood N, Young J, Tilmont E et al (2004) Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioural deficits in a primate model of Parkinson’s disease. Proc Natl Acad Sci U S A 101(52):18171–18176PubMedCrossRefGoogle Scholar
  85. 85.
    Raman A, Ramsey JJ, Kemnitz JW et al (2007) Influences of calorie restriction and age on energy expenditure in the rhesus monkey. Am J Physiol Endocrinol Metab 292(1):E101–E106PubMedCrossRefGoogle Scholar
  86. 86.
    Matochik JA, Chefer SI, Lane MA et al (2004) Age-related decline in striatal volume in rhesus monkeys: assessment of long-term calorie restriction. Neurobiol Aging 25(2):193–200PubMedCrossRefGoogle Scholar
  87. 87.
    Lee J, Duan W, Long JM et al (2000) Dietary restriction increases the number of newly generated neural cells, and induces BDNF expression, in the dentate gyrus. J Mol Neurosci 15(2):99–108PubMedCrossRefGoogle Scholar
  88. 88.
    Lee J, Seroogy KB, Mattson MP (2002) Dietary restriction enhances neurotrophin expression and neurogenesis in the hippocampus of adult mice. J Neurochem 80(3):539–547PubMedCrossRefGoogle Scholar
  89. 89.
    Park HR, Park M, Choi J et al (2010) A high-fat diet impairs neurogenesis: Involvement of lipid peroxidation and brain-derived neurotrophic factor. Neurosci Lett 482(3):235–239PubMedCrossRefGoogle Scholar
  90. 90.
    Eckles-Smith K, Clayton D, Bickford P, Browning MD (2000) Caloric restriction prevents age-related deficits in LTP and in NMDA receptor expression. Brain Res Mol Brain Res 78(1–2):154–162Google Scholar
  91. 91.
    Tozuka Y, Kumon M, Wada E et al (2010) Maternal obesity impairs hippocampal BDNF production and spatial learning performance in young mouse offspring. Neurochem Int 57(3):235–247PubMedCrossRefGoogle Scholar
  92. 92.
    Stranahan AM, Norman ED, Lee K et al (2008) Diet-induced insulin resistance impairs hippocampal synaptic plasticity and cognition in middle-aged rats. Hippocampus 18(11):1085–1088PubMedCrossRefGoogle Scholar
  93. 93.
    Calon F, Lim GP, Yang F et al (2005) Docosahexaenoic acid protects from dendritic pathology in an Alzheimer’s disease mouse model. Neuron 43(5):633–645CrossRefGoogle Scholar
  94. 94.
    Calon F, Lim GP, Morihara T et al (2005) Dietary n-3 polysaturated fatty acid depletion activated caspases and decreases NMDA receptors in the brain of a transgenic nouse model of Alzheimer’s disease. Eur J Neurosci 22(3):617–626PubMedCrossRefGoogle Scholar
  95. 95.
    Wong KL, Murakami K, Routtenberg A (1989) Dietary cis-fatty acids that increase protein F1 phosphorylation enhance spatial memory. Brain Res 505(2):302–305PubMedCrossRefGoogle Scholar
  96. 96.
    Lim GP, Calon F, Morihara T et al (2005) A diet enriched with the omega-3 fatty acid docosahexaenoic acid reduces amyloid burden in an aged Alzheimer mouse model. J Neurosci 25(12):3032–3040PubMedCrossRefGoogle Scholar
  97. 97.
    Arendash GW, Jensen MT, Salem N Jr et al (2007) A diet high in omega-3 fatty acids does not improve or protect cognitive performance in Alzheimer’s transgenic mice. Neuroscience 149(2):286–302PubMedCrossRefGoogle Scholar
  98. 98.
    Beydoun MA, Beydoun HA, Wang Y (2008) Obesity and central obesity as risk factors for incident dementia and its subtypes: a systematic review and meta-analysis. Obes Rev 9(3):204–218PubMedCrossRefGoogle Scholar
  99. 99.
    Luchsinger JA, Mayeux R (2004) Dietary factors and Alzheimer’s disease. Lancet Neurol 3(10):579–587PubMedCrossRefGoogle Scholar
  100. 100.
    Whitmer RA, Gunderson EP, Barrett-Connor E et al (2005) Obesity in middle age and future risk of dementia: a 27 year longitudinal population based study. BMJ 330(7504):1360PubMedCrossRefGoogle Scholar
  101. 101.
    Hendrie HC, Ogunniyi A, Hall KS et al (2004) Incidence of dementia and Alzheimer disease in 2 communities: Yoruba residing in Ibadan, Nigeria, and African Americans residing in Indianapolis, Indiana. JAMA 295(13):1539–1548Google Scholar
  102. 102.
    Hendrie HC, Hall KS, Ogunniyi A, Gao S (2004) Alzheimer’s disease, genes, and microenvironment: the value of international studies. Can J Psychiatry 49(2):92–99PubMedGoogle Scholar
  103. 103.
    Bronner LL, Kanter DS, Manson JE (1995) Primary prevention of stroke. N Engl J Med 333(21):1392–1400PubMedCrossRefGoogle Scholar
  104. 104.
    Willcox BJ (2007) Caloric restriction, the traditional Okinawan diet, and healthy aging: the diet of the world’s longest-lived people and its potential impact on morbidity and life span. Ann N Y Acad Sci S 1114:434–455CrossRefGoogle Scholar
  105. 105.
    Heilbronn LK, Jonge L de, Frisard MI et al Pennington CALERIE Team (2006) Effect of 6-month calorie restriction on biomarkers of longevity, metabolic adaptation, and oxidative stress in overweight individuals: a randomized controlled trial. JAMA 295(13):1539–1548PubMedCrossRefGoogle Scholar
  106. 106.
    Witte AV, Fobker M, Gellner R et al (2009) Caloric restriction improves memory in elderly humans. Proc Natl Acad Sci U S A 106(4):1255–1260PubMedCrossRefGoogle Scholar
  107. 107.
    Brinkworth GD, Buckley JD, Noakes M et al (2009) Long-term effects of a very low-carbohydrate diet and a low-fat diet on mood and cognitive function. Arch Intern Med 169(20):1873–1880PubMedCrossRefGoogle Scholar
  108. 108.
    Gomez-Pinilla F (2008) Brain foods: the effects of nutrients on brain function. Nat Rev Neurosci 9(7):568–578PubMedCrossRefGoogle Scholar
  109. 109.
    De Caterina R, Zampolli A, Del Turco S et al (2006) Nutritional mechanisms that influence cardiovascular disease. Am J Clin Nutr 83(2):421S–426SGoogle Scholar
  110. 110.
    Freeman MP, Hibbeln JR, Wisner KL et al (2006) Omega-3 fatty acids: evidence basis for treatment and future research in psychiatry. J Clin Psychiatry 67(12):1954–1967PubMedCrossRefGoogle Scholar
  111. 111.
    Conquer JA, Tierney MC, Zecevic J et al (2000) Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 35(12):1305–1312PubMedCrossRefGoogle Scholar
  112. 112.
    Morris MC, Evans DA, Tangney CC et al (2005) Fish consumption and cognitive decline with age in a large community study. Arch Neurol 62(12):1849–1853PubMedCrossRefGoogle Scholar
  113. 113.
    Kalmijn S, Launer LJ, Ott A et al (1997) Dietary fat intake and the risk of incident dementia in the Rotterdam Study. Ann Neurol 42(5):776–782PubMedCrossRefGoogle Scholar
  114. 114.
    Engelhart MJ, Geerlings MI, Ruitenberg A et al (2002) Diet and risk of dementia: Does fat matter? The Rotterdam Study. Neurology 59(12):1915–1921PubMedGoogle Scholar
  115. 115.
    Chiu CC, Su KP, Cheng TC et al (2008) The effects of omega-3 fatty acids monotherapy in Alzheimer’s disease and mild cognitive impairment: a preliminary randomized double-blind placebo-controlled study. Prog Neuropsychopharmacol Biol Psychiatry 32(6):1538–1544PubMedCrossRefGoogle Scholar
  116. 116.
    Freund-Levi Y, Eriksdotter-Jönhagen M, Cederholm T et al (2006) Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study: a randomized double-blind trial. Arch Neurol 63(10):1402–1408PubMedCrossRefGoogle Scholar
  117. 117.
    Van de Rest O, Geleijnse JM, Kok FJ et al (2008) Effect of fish oil on cognitive performance in older subjects: a randomized controlled trial. Neurology 71(6):430–438CrossRefGoogle Scholar
  118. 118.
    Scarmeas JA, Luchsinger N, Schupf N et al (2009) Physical activity, diet, and risk of Alzheimer disease. JAMA 306(2):627–637CrossRefGoogle Scholar
  119. 119.
    Laske C, Eschweiler GW (2006) Brain-derived neurotrophic factor: from nerve growth factor to modulator of brain plasticity in cognitive processes and psychiatric diseases. Nervenarzt 77(5):523–537PubMedCrossRefGoogle Scholar
  120. 120.
    Mata J, Thompson RJ, Gotlib IH (2010) BDNF genotype moderates the relation between physical activity and depressive symptoms. Health Psychol 29(2):130–133PubMedCrossRefGoogle Scholar
  121. 121.
    Mattay VS, Goldberg TE, Fera F et al (2003) Catechol O-methyltransferase val158-met genotype and individual variation in the brain response to amphetamine. Proc Natl Acad Sci U S A 100(10):6186–6191PubMedCrossRefGoogle Scholar
  122. 122.
    Bertollino A, Rubino V, Sambataro F et al (2006) Prefronta-hippocampal coupling during memory processing is modulated by COMT val158met genotype. Biol Psychiatry 60(11):1250–1258CrossRefGoogle Scholar
  123. 123.
    Witte AV, Jansen S, Schirmacher A et al (2011) COMT Val158Met polymorphism modulates cognitive effects of dietary intervention. Front Aging Neurosci (in press)Google Scholar
  124. 124.
    Colman RJ, Anderson RM, Johnson SC et al (2009) Caloric restriction delays disease onset and mortality in rhesus monkeys. Science 325(5937):201–204PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Klinik für NeurologieCharité-Universitätsmedizin Berlin, Charité Campus MitteBerlinDeutschland

Personalised recommendations