Der Nervenarzt

, 82:973 | Cite as

Neuroprotektion in der Therapie der Multiplen Sklerose

Leitthema

Zusammenfassung

Entgegen der mehr als 100 Jahre geltenden Lehrmeinung wissen wir heute, dass neben den gut bekannten entzündlichen Prozessen eine Schädigung von Nervenzellen und Nervenfasern entscheidend in der Pathogenese der Multiplen Sklerose (MS) ist. Histopathologische und bildgebende Verfahren belegen oft schon früh im Krankheitsverlauf eine erhebliche neuro- und axondegenerative Komponente auch außerhalb der typischen Entmarkungsherde einschließlich der grauen Substanz. Weniger die Entzündung als vielmehr die kumulative Zerstörung neuronaler und axonaler Strukturen scheint hauptverantwortlich für die Entstehung eines permanenten neurologischen Defizits zu sein. Die MS ist somit keine isolierte Erkrankung der weißen Substanz, sondern betrifft diffus das gesamte Zentralnervensystem. Hieraus ergibt sich zwangsläufig die Notwendigkeit, neben den etablierten immunmodulatorischen Therapieverfahren frühzeitig und konsequent eine neuroprotektive und/oder neuroregenerative Behandlung durchzuführen. Sowohl die bereits auf dem Markt befindlichen Therapien als auch die neuen Medikamente für die MS zeigen unterschiedlich ausgeprägte Wirkungen auf das neuronale Kompartiment, d. h. neuroprotektive oder auch Reparatur fördernde Eigenschaften.

Schlüsselwörter

Multiple Sklerose Neuroprotektion Graue Substanz Weiße Substanz Immunmodulatorische Therapieverfahren 

Neuroprotection in the treatment of multiple sclerosis

Summary

Atrophy, the wasting or shrinkage of tissue, of the nervous system is the main feature of neurodegeneration, i.e. the umbrella term for the progressive loss of structure or function of neurons. Loss of neurons due to cell death and axonal degeneration characterize neurodegenerative diseases such as Alzheimer’s disease, Parkinson’s disease or amyotrophic lateral sclerosis. In these illnesses, it still has to be elucidated to which extent inflammation is part of the pathology. Conversely, in chronic inflammation of the central nervous system (CNS), atrophy has previously also been described and neurodegeneration is discussed as a pathologic feature. The most frequent chronic inflammatory disease of the CNS is multiple sclerosis (MS), which leads to devastating relapsing-remitting symptoms and disability during the relapses, increasingly during the course of disease in patients. Meanwhile it became clear that axons already reveal pathology early in the disease and neurons are affected in the cortex and the spinal cord, albeit to a different extent. The broadening of understanding neurodegenerative aspects of MS pathology demands and creates new therapeutic strategies. Current medication used in MS treatment as well as medications about to be approved are primarily anti-inflammatory therapies. By modulating the immune system and thereby blocking key steps of the pathology, the immunomodulation therapies in MS have a slight impact on disability progression. There is, however, clinical and experimental data concerning the potential neuroprotective properties of novel therapies. Combining anti-inflammatory and direct neuroprotective or even neuroregenerative therapy strategies would be a step forward in the treatment of multiple sclerosis.

Keywords

Multiple sclerosis Neuroprotection Grey matter White matter Immunomodulation therapy 

Literatur

  1. 1.
    Aktas O, Prozorovski T, Smorodchenko A et al (2004) Green tea epigallocatechin-3-gallate mediates T cellular NF-κB inhibition and exerts neuroprotection in autoimmune encephalomyelitis. J Immunol 173:5794–5800PubMedGoogle Scholar
  2. 2.
    Barkhof F, Calabresi PA, Miller DH et al (2009) Imaging outcomes for neuroprotection and repair in multiple sclerosis trials. Nat Rev Neurol 5:256–266PubMedCrossRefGoogle Scholar
  3. 3.
    Bjartmar C, Kidd G, Mörk S et al (2000) Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol 48:893–901PubMedCrossRefGoogle Scholar
  4. 4.
    Brex PA, Leary SM, O’Riordan JI et al (2001) Measurement of spinal cord area in clinically isolated syndromes suggestive of multiple sclerosis. J Neurol Neurosurg Psychiatry 70:544–547PubMedCrossRefGoogle Scholar
  5. 5.
    Chard DT, Griffin CM, Parker GJ et al (2002) Brain atrophy in clinically early relapsing-remitting multiple sclerosis. Brain 125:327–337PubMedCrossRefGoogle Scholar
  6. 6.
    Charil A, Dagher A, Lerch JP et al (2007) Focal cortical atrophy in multiple sclerosis: relation to lesion load and disability. Neuroimage 34:509–517PubMedCrossRefGoogle Scholar
  7. 7.
    Cifelli A, Arridge M, Jezzard P et al (2002) Thalamic neurodegeneration in multiple sclerosis. Ann Neurol 52:650–653PubMedCrossRefGoogle Scholar
  8. 8.
    Coles AJ, Compston DA, Selmaj KW et al (2008) Alemtuzumab vs. interferon beta-1a in early multiple sclerosis. N Engl J Med 359:1786–1801PubMedCrossRefGoogle Scholar
  9. 9.
    Cohen JA, Barkhof F, Comi G et al (2010) Oral fingolimod or intramuscular interferon for relapsing multiple sclerosis. N Engl J Med 362:402–415PubMedCrossRefGoogle Scholar
  10. 10.
    Compston A, Coles A (2002) Multiple sclerosis. Lancet 359:1221–1231PubMedCrossRefGoogle Scholar
  11. 11.
    De Stefano N, Narayanan S, Matthews PM et al (1999) In vivo evidence for axonal dysfunction remote from focal cerebral demyelination of the type seen in multiple sclerosis. Brain 122:1933–1939CrossRefGoogle Scholar
  12. 12.
    Ferguson B, Matyszak MK, Esiri MM et al (1997) Axonal damage in acute multiple sclerosis lesions. Brain 120:393–399PubMedCrossRefGoogle Scholar
  13. 13.
    Filippi M, Rovaris M, Rocca MA et al (2001) Glatiramer acetate reduces the proportion of new MS lesions evolving into „black holes“. Neurology 57:731–733PubMedGoogle Scholar
  14. 14.
    Filippi M, Rovaris M, Inglese M et al (2004) Interferon beta-1a for brain tissue loss in patients at presentation with syndromes suggestive of multiple sclerosis: a randomised, double-blind, placebo-controlled trial. Lancet 364:1489–1496PubMedCrossRefGoogle Scholar
  15. 15.
    Fisher E, Lee JC, Nakamura K et al (2008) Gray matter atrophy in multiple sclerosis: a longitudinal study. Ann Neurol 64:255–265PubMedCrossRefGoogle Scholar
  16. 16.
    Fisher E, Rudick RA, Simon JH et al (2002) Eight-year follow-up study of brain atrophy in patients with MS. Neurology 59:1412–1420PubMedGoogle Scholar
  17. 17.
    Gilmore CP, DeLuca GC, Bö L et al (2009) Spinal cord neuronal pathology in multiple sclerosis. Brain Pathol 19:642–649PubMedCrossRefGoogle Scholar
  18. 18.
    Gilmore CP, DeLuca GC, Bö L et al (2005) Spinal cord atrophy in multiple sclerosis caused by white matter volume loss. Arch Neurol 62:1859–1862PubMedCrossRefGoogle Scholar
  19. 19.
    Gilmore CP, Donaldson I, Bö L et al (2009) Regional variations in the extent and pattern of grey matter demyelination in multiple sclerosis: a comparison between the cerebral cortex, cerebellar cortex, deep grey matter nuclei and the spinal cord. J Neurol Neurosurg Psychiatry 80:182–187PubMedCrossRefGoogle Scholar
  20. 20.
    Hardmeier M, Wagenpfeil S, Freitag P et al (2005) Rate of brain atrophy in relapsing MS decreases during treatment with IFNbeta-1a. Neurology 64:236–240PubMedCrossRefGoogle Scholar
  21. 21.
    Hoffmann S, Tittgemeyer M, Cramon DY von (2007) Cognitive impairment in multiple sclerosis. Curr Opin Neurol 20:275–280PubMedCrossRefGoogle Scholar
  22. 22.
    Jones JL, Anderson JM, Phuah CL et al (2010) Improvement in disability after alemtuzumab treatment of multiple sclerosis is associated with neuroprotective autoimmunity. Brain 133:2232–2247PubMedCrossRefGoogle Scholar
  23. 23.
    Kornek B, Storch MK, Weissert R et al (2000) Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267–276PubMedCrossRefGoogle Scholar
  24. 24.
    Kuhlmann T, Lingfeld G, Bitsch A et al (2002) Acute axonal damage in multiple sclerosis is most extensive in early disease stages and decreases over time. Brain 125:2202–2212PubMedCrossRefGoogle Scholar
  25. 25.
    Linker RA, Lee DH, Demir S et al (2010) Functional role of brain-derived neurotrophic factor in neuroprotective autoimmunity: therapeutic implications in a model of multiple sclerosis. Brain 133:2248–2263PubMedGoogle Scholar
  26. 26.
    Linker RA, Lee DH, Ryan S et al (2011) Fumaric acid esters exert neuroprotective effects in neuroinflammation via activation of the Nrf2 antioxidant pathway. Brain 134:678–692PubMedCrossRefGoogle Scholar
  27. 27.
    Mainero C, Caramia F, Pozzilli C et al (2004) fMRI evidence of brain reorganization during attention and memory tasks in multiple sclerosis. Neuroimage 21:858–867PubMedCrossRefGoogle Scholar
  28. 28.
    Matthews PM, Pioro E, Narayanan S et al (1996) Assessment of lesion pathology in multiple sclerosis using quantitative MRI morphometry and magnetic resonance spectroscopy. Brain 119:715–722PubMedCrossRefGoogle Scholar
  29. 29.
    Naumann T, Peterson GM, Frotscher M (1992) Fine structure of rat septohippocampal neurons: II. A time course analysis following axotomy. J Comp Neurol 325:219–242PubMedCrossRefGoogle Scholar
  30. 30.
    Papadopoulos D, Dukes S, Patel R et al (2009) Substantial archaeocortical atrophy and neuronal loss in multiple sclerosis. Brain Pathol 19:238–253PubMedCrossRefGoogle Scholar
  31. 31.
    Peterson JW, Bö L, Mörk S et al (2001) Transected neurites, apoptotic neurons, and reduced inflammation in cortical multiple sclerosis lesions. Ann Neurol 50:389–400PubMedCrossRefGoogle Scholar
  32. 32.
    Peterson GM, Naumann T, Frotscher M (1993) Light- and electron-microscopic studies of identified septohippocampal neurons surviving axotomy. Ann N Y Acad Sci 679:291–298PubMedCrossRefGoogle Scholar
  33. 33.
    Richards TL (1991) Proton MR spectroscopy in multiple sclerosis: value in establishing diagnosis, monitoring progression, and evaluating therapy. Am J Roentgenol 157:1073–1078Google Scholar
  34. 34.
    Rudick RA, Fisher E, Lee JC et al (1999) Use of the brain parenchymal fraction to measure whole brain atrophy in relapsing-remitting MS. Multiple Sclerosis Collaborative Research Group. Neurology 53:1698–1704PubMedGoogle Scholar
  35. 35.
    Sailer M, Fischl B, Salat D et al (2003) Focal thinning of the cerebral cortex in multiple sclerosis. Brain 126:1734–1744PubMedCrossRefGoogle Scholar
  36. 36.
    Siffrin V, Vogt J, Radbruch H et al (2010) Multiple sclerosis – candidate mechanisms underlying CNS atrophy. Trends Neurosci 33:202–210PubMedCrossRefGoogle Scholar
  37. 37.
    Staffen W, Mair A, Zauner H et al (2002) Cognitive function and fMRI in patients with multiple sclerosis: evidence for compensatory cortical activation during an attention task. Brain 125:1275–1282PubMedCrossRefGoogle Scholar
  38. 38.
    Trapp BD, Peterson J, Ransohoff RM et al (1998) Axonal transection in the lesions of multiple sclerosis. N Engl J Med 338:278–285PubMedCrossRefGoogle Scholar
  39. 39.
    Trojano M, Pellegrini F, Fuiani A et al (2007) New natural history of interferon-beta-treated relapsing multiple sclerosis. Ann Neurol 61:300–306PubMedCrossRefGoogle Scholar
  40. 40.
    Vercellino M, Plano F, Votta B et al (2005) Grey matter pathology in multiple sclerosis. J Neuropathol Exp Neurol 64:1101–1107PubMedCrossRefGoogle Scholar
  41. 41.
    Vercellino M, Merola A, Piacentino C et al (2007) Altered glutamate reuptake in relapsing-remitting and secondary progressive multiple sclerosis cortex: correlation with microglia infiltration, demyelination, and neuronal and synaptic damage. J Neuropathol Exp Neurol 66:732–739PubMedCrossRefGoogle Scholar
  42. 42.
    Vogt J, Paul F, Aktas O et al (2009) Lower motor neuron loss in multiple sclerosis and experimental autoimmune encephalomyelitis. Ann Neurol 66:310–322PubMedCrossRefGoogle Scholar
  43. 43.
    Wegner C, Esiri MM, Chance SA et al (2006) Neocortical neuronal, synaptic, and glial loss in multiple sclerosis. Neurology 67:960–967PubMedCrossRefGoogle Scholar
  44. 44.
    Wylezinska M, Cifelli A, Jezzard P et al (2003) Thalamic neurodegeneration in relapsing-remitting multiple sclerosis. Neurology 60:1949–1954PubMedGoogle Scholar
  45. 45.
    Zipp F, Aktas O (2006) The brain as a target of inflammation: common pathways link inflammatory and neurodegenerative diseases. Trends Neurosci 29:518–527PubMedCrossRefGoogle Scholar
  46. 46.
    Zipp F, Kerschensteiner M, Dornmair K et al (1998) Diversity of the anti-T-cell receptor immune response and its implications for T-cell vaccination therapy of multiple sclerosis. Brain 121:1395–1407PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  1. 1.Klinik und Poliklinik für NeurologieUniversitätsmedizin Mainz, Johannes-Gutenberg-UniversitätMainzDeutschland
  2. 2.Neurologische UniversitätsklinikSt. Josef Hospital, Ruhr-Universität BochumBochumDeutschland

Personalised recommendations