Der Nervenarzt

, Volume 81, Issue 12, pp 1444–1449

Strukturelle und funktionelle Bildgebung zur Pathophysiologie der Apraxie

Leitthema

Zusammenfassung

Um therapeutische Strategien für die beeinträchtigenden apraktischen Defizite nach linkshemisphärischem Schlaganfall (d. h. Störung der Imitation, der Pantomime und des Objektgebrauchs) entwickeln zu können, ist ein besseres pathophysiologisches Verständnis der neuralen Mechanismen, die der Apraxie zugrunde liegen, essenziell. Hierzu haben die funktionelle und strukturelle Bildgebung in der letzten Zeit einen relevanten Beitrag geleistet: Während apraktische Defizite des Objektgebrauchs auf der Dysfunktion eines ausgedehnten linkshemisphärischen frontoparietalen Netzwerkes beruhen, kommt es bei einer Funktionsstörung des linken inferioren frontalen Kortex zu Pantomimedefiziten. Weitere apraxierelevante motorisch-kognitive Funktionen wie die Imitation von Gesten, die Integration von zeitlicher und räumlicher Bewegungsinformation und die willkürliche Planung von Bewegungen beruhen auf der Integrität des linken parietalen Kortex. Moderne Methoden der funktionellen und strukturellen Bildgebung, wie Dynamic Causal Modelling (DCM) und Diffusion Tensor Imaging (DTI) werden es erlauben, die Pathophysiologie der Apraxie auf der Netzwerkebene genauer zu charakterisieren.

Schlüsselwörter

Apraxie Pathologie Läsionsanalysen Funktionelle Bildgebung Statistical parametric mapping 

Structural and functional neuroimaging of the pathophysiology of apraxia

Summary

A better understanding of the neural bases of apraxia is an important prerequisite to develop new therapeutic strategies for the disabling apraxic deficits after left-hemisphere stroke, like disturbed imitation of gestures, deficient pantomime, and object use deficits. Recently, functional and structural imaging methods allowed deeper insights into the pathophysiology of apraxia: While apraxic object use deficits result from the dysfunction of an extended fronto-parietal network within the left hemisphere, pantomime deficits are caused by impaired functioning of the left inferior frontal cortex. Further apraxia-related, motor cognitive processes (i.e., gesture imitation, integration of temporal and spatial movement information, and intentional movement planning) depend on the integrity of the left parietal cortex. Newly developed functional and structural imaging methods, like dynamic causal modelling (DCM) and diffusion tensor imaging (DTI), promise to further elucidate the pathophysiology of apraxia at the network level.

Keywords

Apraxia Clinical pathology Lesion analysis Functional imaging Statistical parametric mapping 

Literatur

  1. 1.
    Kaya K, Unsal-Delialioglu S, Kurt M et al (2006) Evaluation of ideomotor apraxia in patients with stroke: a study of reliability and validity. J Rehabil Med 38:108–112CrossRefPubMedGoogle Scholar
  2. 2.
    Weiss PH, Fink GR (2006) Therapie der Apraxie In: Dettmers C, Bülau P, Weiller C (Hrsg) Die motorische Rehabilitation von Patienten mit Schlaganfall: Hippocampus, Bad HonnefGoogle Scholar
  3. 3.
    Goldenberg G, Hagmann S (1997) The meaning of meaningless gestures: a study of visuo-imitative apraxia. Neuropsychologia 35:333–341CrossRefPubMedGoogle Scholar
  4. 4.
    Bartolo A, Cubelli R, Della Sala S et al (2001) Double dissociation between meaningful and meaningless gesture reproduction in apraxia. Cortex 37:696–699CrossRefPubMedGoogle Scholar
  5. 5.
    Rumiati RI, Weiss PH, Tessari A et al (2005) Common and differential neural mechanisms supporting imitation of meaningful and meaningless actions. J Cogn Neurosci 17:1420–1431CrossRefPubMedGoogle Scholar
  6. 6.
    Tessari A, Rumiati RI (2004) The strategic control of multiple routes in imitation of actions. J Exp Psychol Hum Percept Perform 30:1107–1116CrossRefPubMedGoogle Scholar
  7. 7.
    Tessari A, Canessa N, Ukmar M et al (2007) Neuropsychological evidence for a strategic control of multiple routes in imitation. Brain 130:1111–1126CrossRefPubMedGoogle Scholar
  8. 8.
    Hermsdörfer J, Goldenberg G, Wachsmuth C et al (2001) Cortical correlates of gesture processing: Clues to the cerebral mechanisms underlying apraxia during the imitation of menaingless gestures. Neuroimage 14:149–161CrossRefPubMedGoogle Scholar
  9. 9.
    Mühlau M, Hermsdörfer J, Goldenberg G et al (2005) Left inferior parietal dominance in gesture imitation: an fMRI study. Neuropsychologia 43:1086–1098CrossRefPubMedGoogle Scholar
  10. 10.
    Goldenberg G, Karnath HO (2006) The neural basis of imitation is body part specific. J Neurosci 26:6282–6287CrossRefPubMedGoogle Scholar
  11. 11.
    Goldenberg G (1996) Defective imitation of gestures in patients with damage in the left or right hemispheres. J Neurol Neurosurg Psychiatry 61:176–180CrossRefPubMedGoogle Scholar
  12. 12.
    Rothi LJG, Heilman KM (1984) Acquisition and retention of gestures by apraxic patients. Brain Cogn 3:426–437CrossRefPubMedGoogle Scholar
  13. 13.
    Goldenberg G, Hartmann K, Schlott I (2003) Defective pantomime of object use in left brain damage: apraxia or asymbolia? Neuropsychologia 41:1565–1573CrossRefPubMedGoogle Scholar
  14. 14.
    Goldenberg G (2003) Pantomime of object use: a challenge to cerebral localization of cognitive function. Neuroimage 20:S101–S106CrossRefPubMedGoogle Scholar
  15. 15.
    Rumiati RI, Weiss PH, Shallice T et al (2004) Neural basis of pantomiming the use of visually presented objects. Neuroimage 21:1224–1231CrossRefPubMedGoogle Scholar
  16. 16.
    Hermsdörfer J, Terlinden G, Mühlau M et al (2007) Neural representations of pantomimed and actual tool use: Evidence from an event-related fMRI study. Neuroimage 36:T109–T118CrossRefPubMedGoogle Scholar
  17. 17.
    Weiss PH, Rahbari NN, Hesse MD et al (2008) Deficient sequencing of pantomimes in apraxia. Neurology 70:834–840CrossRefPubMedGoogle Scholar
  18. 18.
    Goldenberg G, Hermsdörfer J, Glindemann R et al (2007) Pantomime of tool use depends on integrity of left inferior frontal cortex. Cereb Cortex 17:2769–2776CrossRefPubMedGoogle Scholar
  19. 19.
    Amunts K, Weiss PH, Mohlberg H et al (2004) Analysis of neural mechanisms underlying verbal fluency in cytoarchitectonically defined stereotaxic space – The roles of Brodmann areas 44 and 45. Neuroimage 22:42–56CrossRefPubMedGoogle Scholar
  20. 20.
    Bartolo A, Cubelli R, Della Sala S et al (2003) Pantomimes are special gestures which rely on working memory. Brain Cogn 53:483–494CrossRefPubMedGoogle Scholar
  21. 21.
    Baier B, Karnath HO, Dieterich M et al (2010) Keeping memory clear and stable – the contribution of human basal ganglia and prefrontal cortex to working memory. J Neurosci 30:9788–9792CrossRefPubMedGoogle Scholar
  22. 22.
    De Renzi E, Lucchelli F (1988) Ideational apraxia. Brain 111:1173–1185CrossRefGoogle Scholar
  23. 23.
    Lehmkuhl G, Poeck K (1981) A disturbance in the conceptual organization of actions in patients with ideational apraxia. Cortex 17:153–158PubMedGoogle Scholar
  24. 24.
    Donkervoort M, Dekker J, Deelman BG (2006) The course of apraxia and ADL functioning in left hemisphere stroke patients treated in rehabilitation centres and nursing homes. Clin Rehabil 20:1085–1093CrossRefPubMedGoogle Scholar
  25. 25.
    Hanna-Pladdy B, Heilman KM, Foundas AL (2003) Ecological implications of ideomotor apraxia. Neurology 60:487–490PubMedGoogle Scholar
  26. 26.
    Binkofski F, Buccino G, Posse P et al (1999) A fronto-parietal cicuit for object manipulation in man: evidence from an fMRI-study. Eur J Neurosci 11:3276–3286CrossRefPubMedGoogle Scholar
  27. 27.
    Johnson-Frey SH, Newman-Norlund R, Grafton ST (2005) A distributed left hemisphere network active during planning of everyday tool use skills. Cereb Cortex 15:681–695CrossRefPubMedGoogle Scholar
  28. 28.
    Daprati E, Sirigu A (2006) How we interact with objects: learning from brain lesions. Trends Cogn Sci in pressGoogle Scholar
  29. 29.
    Randerath J, Goldenberg G, Spijkers W et al (2010) Different left brain regions are essential for grasping a tool compared with its subsequent use. Neuroimage 53:171–180CrossRefPubMedGoogle Scholar
  30. 30.
    Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207:3–17CrossRefPubMedGoogle Scholar
  31. 31.
    Basso A, Capitani E, Della Sala S et al (1987) Ideomotor apraxia: a study of initial severity. Acta Neurol Scand 76:142–146CrossRefPubMedGoogle Scholar
  32. 32.
    Hesse MD, Thiel CM, Stephan KE et al (2006) The left parietal cortex and motor intention: an event-related functional magnetic resonance imaging study. Neuroscience 140:1209–1221CrossRefPubMedGoogle Scholar
  33. 33.
    Liepmann H (1920) Apraxie. Ergebnis Ges Med 1:516–543Google Scholar
  34. 34.
    Assmus A, Marshall JC, Ritzl A et al (2003) Left inferior parietal cortex integrates time and space during collision judgements. Neuroimage 20:82–88CrossRefGoogle Scholar
  35. 35.
    Weiss PH, Rahbari NN, Lux S et al (2006) Processing the spatial configuration of complex actions involves right posterior parietal cortex: an fMRI study with clinical implications. Hum Brain Mapp 27:1004–1014CrossRefPubMedGoogle Scholar
  36. 36.
    Bartolomeo P, Thiebaut de Schotten M, Doricchi F (2007) Left unilateral neglect as a disconnection syndrome. Cereb Cortex 17:2479–2490CrossRefPubMedGoogle Scholar
  37. 37.
    Ameli M, Grefkes C, Kemper F et al (2009) Differential effects of high-frequency repetitive transcranial magnetic stimulation over ipsilesional primary motor cortex in cortical and subcortical middle cerebral artery stroke. Ann Neurol 66:298–309CrossRefPubMedGoogle Scholar
  38. 38.
    Grefkes C, Nowak DA, Eickhoff SB et al (2008) Cortical connectivity after subcortical stroke assessed with functional magnetic resonance imaging. Ann Neurol 63:236–246CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Kognitive Neurologie, Institut für Neurowissenschaften und Medizin (INM-3)Forschungszentrum JülichJülichDeutschland
  2. 2.Klinik und Poliklinik für NeurologieUniklinik KölnKölnDeutschland

Personalised recommendations