Der Nervenarzt

, Volume 81, Issue 4, pp 471–496


CME Weiterbildung · Zertifizierte Fortbildung


Leukenzephalopathische Erkrankungen des Erwachsenenalters sind ätiologisch heterogen und entsprechend differenzialdiagnostisch umfangreich. Die wichtigsten Ursachen sind entzündlich oder vaskulär bedingt, aber auch toxische und neoplastische Erkrankungen müssen mit bedacht werden.

Leukodystrophien sind demgegenüber genetisch determinierte, in der Regel chronisch progrediente Erkrankungen des Myelins mit variablem pathogenetischem Hintergrund, klinischem Verlauf und paraklinischem Befundmuster. Einige Erkrankungen sind behandelbar. Vor diesem Hintergrund und im Licht der besonderen Bedeutung einer humangenetischen Beratung betroffener Familien, erscheint die differenzialdiagnostische Aufklärung und Abgrenzung der Erkrankungen gegenüber erworbenen Leukenzephalopathien des Erwachsenenalters besonders bedeutsam. Es werden die klinischen und neuroradiologischen Befunde der wichtigsten Leukodystrophien des Erwachsenenalters sowie deren biochemische und molekulargenetische Diagnosemöglichkeiten dargestellt.


Leukenzephalopathie Multiple Sklerose Leukodystrophie Angeborene Stoffwechselstörung Hypomyelinisierung Demyelinisierung MRT 

Demyelinating disorders


Leukoencephalopathies in adults are frequent and exhibit highly variable aetiology, including multiple acquired causes such as inflammatory, vascular or toxic diseases and neoplasias.

In contrast leukodystrophies are genetically determined, chronic progressive myelin disorders with a variable pathogenetic background and a great diversity of clinical and paraclinical findings. Some diseases, namely those with an additional inborn error of metabolism, are treatable. Genetic counselling appears to be of major importance for patients and their families. In the light of numerous acquired adulthood leukoencephalopathies a clear delineation of late-onset genetic leukodystrophies is necessary. Clinical symptoms and MRI patterns of some of the major leukodystrophies are reported, including possibilities of biochemical and genetic testing.


Leukoencephalopathy Multiple sclerosis Leukodystrophy Inborn errors of metabolism Hypomyelination Demyelination MRI 


  1. 1.
    Geurts JJ, Stys PK, Minagar A et al (2009) Gray matter pathology in (chronic) MS: modern views on an early observation. J Neurol Sci 282(1–2):12–20Google Scholar
  2. 2.
    Lucchinetti C, Bruck W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47(6):707–717PubMedGoogle Scholar
  3. 3.
    Pittock SJ, Reindl M, Achenbach S et al (2007) Myelin oligodendrocyte glycoprotein antibodies in pathologically proven multiple sclerosis: frequency, stability and clinicopathologic correlations. Mult Scler 13(1):7–16PubMedGoogle Scholar
  4. 4.
    Seewann A, Enzinger C, Filippi M et al (2008) MRI characteristics of atypical idiopathic inflammatory demyelinating lesions of the brain: A review of reported findings. J Neurol 255(1):1–10PubMedGoogle Scholar
  5. 5.
    Lennon VA, Kryzer TJ, Pittock SJ et al (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202(4):473–477PubMedGoogle Scholar
  6. 6.
    Wingerchuk DM, Lennon VA, Lucchinetti CF et al (2007) The spectrum of neuromyelitis optica. Lancet Neurol 6(9):805–815PubMedGoogle Scholar
  7. 7.
    Pawate S, Sriram S (2009) Isolated longitudinal myelitis: a report of six cases. Spinal Cord 47(3):257–261PubMedGoogle Scholar
  8. 8.
    Lucchinetti CF, Mandler RN, McGavern D et al (2002) A role for humoral mechanisms in the pathogenesis of Devic’s neuromyelitis optica. Brain 125(7):1450–1461PubMedGoogle Scholar
  9. 9.
    Jarius S, Aboul-Enein F, Waters P et al (2008) Antibody to aquaporin-4 in the long-term course of neuromyelitis optica. Brain 131(11):3072–3080PubMedGoogle Scholar
  10. 10.
    Magana SM, Pittock SJ, Lennon VA et al (2009) Neuromyelitis optica IgG serostatus in fulminant central nervous system inflammatory demyelinating disease. Arch Neurol 66(8):964–966PubMedGoogle Scholar
  11. 11.
    Bennett JL, Lam C, Kalluri SR et al (2009) Intrathecal pathogenic anti-aquaporin-4 antibodies in early neuromyelitis optica. Ann Neurol 66(5):617–629PubMedGoogle Scholar
  12. 12.
    Banwell B, Kennedy J, Sadovnick D et al (2009) Incidence of acquired demyelination of the CNS in Canadian children. Neurology 72(3):232–239PubMedGoogle Scholar
  13. 13.
    Schwarz S, Mohr A, Knauth M et al (2001) Acute disseminated encephalomyelitis: a follow-up study of 40 adult patients. Neurology 56(10):1313–1318PubMedGoogle Scholar
  14. 14.
    Franciotta D, Zardini E, Ravaglia S et al (2006) Cytokines and chemokines in cerebrospinal fluid and serum of adult patients with acute disseminated encephalomyelitis. J Neurol Sci 247(2):202–207PubMedGoogle Scholar
  15. 15.
    Brilot F, Dale RC, Selter RC et al (2009) Antibodies to native myelin oligodendrocyte glycoprotein in children with inflammatory demyelinating central nervous system disease. Ann Neurol 66(6):833–842PubMedGoogle Scholar
  16. 16.
    Åström KE, Mancall EL, Richardson EP (1958) Progressive multifocal leuko-encephalopathy. A hitherto unrecognized complication of chronic lymphatic leukaemia and Hodgkin’s disease. Brain 81:93–111PubMedGoogle Scholar
  17. 17.
    Zu Rhein GM, Chou SM (1965) Particles resembling papovavirions in human cerebral demyelinating disease. Science 148:1477–1479Google Scholar
  18. 18.
    Padgett BL, Walker DL, Zu Rhein GM et al (1971) Cultivation of papova-like virus from human brain with progressive multifocal leucoencephalopathy. Lancet 297(7712):1257–1260Google Scholar
  19. 19.
    Dalianis T, Ramqvist T, Andreasson K et al (2009) KI, WU and Merkel cell polyomaviruses: a new era for human polyomavirus research. Semin Cancer Biol 19(4):270–275PubMedGoogle Scholar
  20. 20.
    Kean JM, Rao S, Wang M, Garcea RL (2009) Seroepidemiology of human polyomaviruses. PLoS Pathog 5(3):e1000363PubMedGoogle Scholar
  21. 21.
    Egli A, Infanti L, Dumoulin A et al (2009) Prevalence of polyomavirus BK and JC infection and replication in 400 healthy blood donors. J Infect DisGoogle Scholar
  22. 22.
    Weber T, Trebst C, Frye S et al (1997) Analysis of the systemic and intrathecal humoral immune response in progressive multifocal leukoencephalopathy. J Infect Dis 176(1):250–254PubMedGoogle Scholar
  23. 23.
    Langer-Gould A, Atlas SW, Green AJ et al (2005) Progressive multifocal leukoencephalopathy in a patient treated with natalizumab. N Engl J Med 353(4):375–381PubMedGoogle Scholar
  24. 24.
    Linda H, Heijne A von, Major EO et al (2009) Progressive multifocal leukoencephalopathy after natalizumab monotherapy. N Engl J Med 361(11):1081–1087PubMedGoogle Scholar
  25. 25.
    Wenning W, Haghikia A, Laubenberger J et al (2009) Treatment of progressive multifocal leukoencephalopathy associated with natalizumab. N Engl J Med 361(11):1075–1080PubMedGoogle Scholar
  26. 26.
    Yousry TA, Major EO, Ryschkewitsch C et al (2006) Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 354(9):924–933PubMedGoogle Scholar
  27. 27.
    Weber T (2008) Progressive multifocal leukoencephalopathy. Neurol Clin 26(3):833–854PubMedGoogle Scholar
  28. 28.
    Carson KR, Evens AM, Richey EA et al (2009) Progressive multifocal leukoencephalopathy following rituximab therapy in HIV negative patients: a report of 57 cases from the Research on Adverse Drug Event and Reports (RADAR) project. Blood 113:4834–4840PubMedGoogle Scholar
  29. 29.
    Gray F, Bazille C, Adle-Biassette H et al (2005) Central nervous system immune reconstitution disease in acquired immunodeficiency syndrome patients receiving highly active antiretroviral treatment. J Neurovirol 11(Suppl 3):16–22PubMedGoogle Scholar
  30. 30.
    Love S (2006) Demyelinating diseases. J Clin Pathol 59(11):1151–1159PubMedGoogle Scholar
  31. 31.
    Jellinger KA, Setinek U, Drlicek M et al (2000) Neuropathology and general autopsy findings in AIDS during the last 15 years. Acta Neuropathol 100(2):213–220PubMedGoogle Scholar
  32. 32.
    Hainfellner JA, Budka H (1997) Neuropathology of human immunodeficiency virus related opportunistic infections and related neoplasms. In: Berger JR, Levy RM (eds) AIDS and the nervous system. Lippincott-Raven, Philadelphia, p 481–515Google Scholar
  33. 33.
    Tan K, Roda R, Ostrow L et al (2009) PML-IRIS in patients with HIV infection. Clinical manifestations and treatment with steroids. NeurologyGoogle Scholar
  34. 34.
    Wuthrich C, Kesari S, Kim WK et al (2006) Characterization of lymphocytic infiltrates in progressive multifocal leukoencephalopathy: co-localization of CD8(+) T cells with JCV-infected glial cells. J Neurovirol 12(2):116–128PubMedGoogle Scholar
  35. 35.
    Kuchelmeister K, Gullotta F, Bergmann M et al (1993) Progressive multifocal leukoencephalopathy (PML) in the acquired immunodeficiency syndrome (AIDS). A neuropathological autopsy study of 21 cases. Pathol Res Pract 189(2):163–173PubMedGoogle Scholar
  36. 36.
    Giudici B, Vaz B, Bossolasco S et al (2000) Highly active antiretroviral therapy and progressive multifocal leukoencephalopathy: effects on cerebrospinal fluid markers of JC virus replication and immune response. Clin Infect Dis 30(1):95–99PubMedGoogle Scholar
  37. 37.
    Lima MA, Marzocchetti A, Autissier P et al (2007) Frequency and phenotype of JC virus-specific CD8+ T lymphocytes in the peripheral blood of patients with progressive multifocal leukoencephalopathy. J Virol 81(7):3361–3368PubMedGoogle Scholar
  38. 38.
    Du Pasquier RA, Clark KW, Smith PS et al (2001) JCV-specific cellular immune response correlates with a favorable clinical outcome in HIV-infected individuals with progressive multifocal leukoencephalopathy. J Neurovirol 7(4):318–322Google Scholar
  39. 39.
    Khanna N, Wolbers M, Mueller NJ et al (2009) JC virus-specific immune responses in human immunodeficiency virus type 1 patients with progressive multifocal leukoencephalopathy. J Virol 83(9):4404–4411PubMedGoogle Scholar
  40. 40.
    Kuchelmeister K, Bergmann M, Gullotta F (1993) Cellular changes in the cerebellar granular layer in AIDS-associated PML. Neuropathol Appl Neurobiol 19(5):398–401PubMedGoogle Scholar
  41. 41.
    Du Pasquier RA, Corey S, Margolin DH et al (2003) Productive infection of cerebellar granule cell neurons by JC virus in an HIV+ individual. Neurology 61(6):775–782Google Scholar
  42. 42.
    Wuthrich C, Cheng YM, Joseph JT et al (2009) Frequent infection of cerebellar granule cell neurons by polyomavirus JC in progressive multifocal leukoencephalopathy. J Neuropathol Exp Neurol 68(1):15–25PubMedGoogle Scholar
  43. 43.
    Tallantyre EC, Paine SM, Sharp CP et al (2009) Atypical progressive multifocal leukoencephalopathy associated with an unusual JC polyomavirus mutation. Arch Neurol 66(8):1021–1024PubMedGoogle Scholar
  44. 44.
    Huang D, Cossoy M, Li M et al (2007) Inflammatory progressive multifocal leukoencephalopathy in human immunodeficiency virus-negative patients. Ann NeurolGoogle Scholar
  45. 45.
    Gold R, Hartung HP, Hohlfeld R et al (2009) Therapy of multiple sclerosis with monoclonal antibodies Akt Neurol 36(7):334–344Google Scholar
  46. 46.
    Drake AK, Loy CT, Brew BJ et al (2007) Human immunodeficiency virus-associated progressive multifocal leucoencephalopathy: epidemiology and predictive factors for prolonged survival. Eur J Neurol 14(4):418–423PubMedGoogle Scholar
  47. 47.
    Engsig FN, Hansen AB, Omland LH et al (2009) Incidence, clinical presentation and outcome of progressive multifocal leukoencephalopathy in HIV-infected patients during the highly active antiretroviral therapy era: a nationwide cohort study. J Infect Dis 199(1):77–83PubMedGoogle Scholar
  48. 48.
    Eng PM, Turnbull BR, Cook SF et al (2006) Characteristics and antecedents of progressive multifocal leukoencephalopathy in an insured population. Neurology 67(5):884–886PubMedGoogle Scholar
  49. 49.
    Hall CD, Dafni U, Simpson D et al (1998) Failure of cytarabine in progressive multifocal leukoencephalopathy associated with human immunodeficiency virus infection. AIDS Clinical Trials Group 243 Team. N Engl J Med 338(19):1345–1351PubMedGoogle Scholar
  50. 50.
    De Luca A, Ammassari A, Pezzotti P et al (2008) Cidofovir in addition to antiretroviral treatment is not effective for AIDS-associated progressive multifocal leukoencephalopathy: a multicohort analysis. AIDS 22(14):1759–1767Google Scholar
  51. 51.
    Kraemer C, Evers S, Nolting T et al (2008) Cidofovir in combination with HAART and survival in AIDS-associated progressive multifocal leukoencephalopathy. J NeurolGoogle Scholar
  52. 52.
    Gabuzda DH, Ho DD, Monte SM de la et al (1986) Immunohistochemical identification of HTLV-III antigen in brains of patients with AIDS. Ann Neurol 20(3):289–295PubMedGoogle Scholar
  53. 53.
    Arendt G, Nolting T (2008) Neurological complications of HIV infection. Nervenarzt 79(12):1449–1462; 1463PubMedGoogle Scholar
  54. 54.
    Smith AB, Smirniotopoulos JG, Rushing EJ (2008) From the archives of the AFIP: central nervous system infections associated with human immunodeficiency virus infection: radiologic-pathologic correlation. Radiographics 28(7):2033–2058PubMedGoogle Scholar
  55. 55.
    Hajj-Ali RA, Calabrese LH (2009) Central nervous system vasculitis. Curr Opin Rheumatol 21(1):10–18PubMedGoogle Scholar
  56. 56.
    Birnbaum J, Hellmann DB (2009) Primary angiitis of the central nervous system. Arch Neurol 66(6):704–709PubMedGoogle Scholar
  57. 57.
    Salvarani C, Brown RD Jr, Calamia KT et al (2007) Primary central nervous system vasculitis: analysis of 101 patients. Ann Neurol 62(5):442–451PubMedGoogle Scholar
  58. 58.
    Salvarani C, Brown RD Jr, Calamia KT et al (2008) Primary CNS vasculitis with spinal cord involvement. Neurology 70(24/2):2394–2400Google Scholar
  59. 59.
    Yahyavi-Firouz-Abadi N, Wynn BL, Rybicki FJ et al (2009) Steroid-responsive large vessel vasculitis: application of whole-brain 320-detector row dynamic volume CT angiography and perfusion. AJNR Am J Neuroradiol 30(7):1409–1411PubMedGoogle Scholar
  60. 60.
    Rossi CM, Di Comite G (2009) The clinical spectrum of the neurological involvement in vasculitides. J Neurol Sci 285(1–2):13–21Google Scholar
  61. 61.
    White ML, Hadley WL, Zhang Y, Dogar MA (2007) Analysis of central nervous system vasculitis with diffusion-weighted imaging and apparent diffusion coefficient mapping of the normal-appearing brain. AJNR Am J Neuroradiol 28(5):933–937PubMedGoogle Scholar
  62. 62.
    Rubin AM, Kang H (1987) Cerebral blindness and encephalopathy with cyclosporin A toxicity. Neurology 37(6):1072–1076PubMedGoogle Scholar
  63. 63.
    Hinchey J, Chaves C, Appignani B et al (1996) A reversible posterior leukoencephalopathy syndrome. N Engl J Med 334(8):494–500PubMedGoogle Scholar
  64. 64.
    Herberger S, Linn J, Pfefferkorn T et al (2006) Complexities of „reversible posterior leukoencephalopathy syndrome“. Nervenarzt 77(10):1218–1222PubMedGoogle Scholar
  65. 65.
    Briganti C, Caulo M, Notturno F et al (2009) Asymptomatic spinal cord involvement in posterior reversible encephalopathy syndrome. Neurology 73(18):1507–1508PubMedGoogle Scholar
  66. 66.
    Nagato M, Takahashi Y, Yoshioka M, Nambu M (2009) A case of hypertensive encephalopathy with extensive spinal lesions on MRI. Brain DevGoogle Scholar
  67. 67.
    Mueller-Mang C, Mang T, Pirker A et al (2009) Posterior reversible encephalopathy syndrome: do predisposing risk factors make a difference in MRI appearance? Neuroradiology 51(6):373–383PubMedGoogle Scholar
  68. 68.
    Roman GC (1987) Senile dementia of the Binswanger type. A vascular form of dementia in the elderly. JAMA 258(13):1782–1788PubMedGoogle Scholar
  69. 69.
    Bartels AL, Kortekaas R, Bart J et al (2009) Blood-brain barrier P-glycoprotein function decreases in specific brain regions with aging: a possible role in progressive neurodegeneration. Neurobiol Aging 30(11):1818–1824PubMedGoogle Scholar
  70. 70.
    Young VG, Halliday GM, Kril JJ (2008) Neuropathologic correlates of white matter hyperintensities. Neurology 71(11):804–811PubMedGoogle Scholar
  71. 71.
    Han JH, Wong KS, Wang YY et al (2009) Plasma level of sICAM-1 is associated with the extent of white matter lesion among asymptomatic elderly subjects. Clin Neurol Neurosurg 111(10):847–851PubMedGoogle Scholar
  72. 72.
    Schöls L, Boesch S, Köhler W et al (2008) Leukodystrophien im Erwachsenenalter. In: Diener HC, Putzk IN (Hrsg) Georg Thieme, StuttgartGoogle Scholar
  73. 73.
    Kemp S, Pujol A, Waterham HR et al (2001) ABCD1 mutations and the X-linked adrenoleukodystrophy mutation database: role in diagnosis and clinical correlations. Hum Mutat 18(6):499–515PubMedGoogle Scholar
  74. 74.
    Wichers M, Kohler W, Brennemann W et al (1999) X-linked adrenomyeloneuropathy associated with 14 novel ALD-gene mutations: no correlation between type of mutation and age of onset. Hum Genet 105(1–2):116–119Google Scholar
  75. 75.
    Knaap MS van der, Pronk JC, Scheper GC (2006) Vanishing white matter disease. Lancet Neurol 5(5):413–423PubMedGoogle Scholar
  76. 76.
    Heim P, Claussen M, Hoffmann B et al (1997) Leukodystrophy incidence in Germany. Am J Med Genet 71(4):475–478PubMedGoogle Scholar
  77. 77.
    Schiffmann R, Knaap MS van der (2009) Invited article: an MRI-based approach to the diagnosis of white matter disorders. Neurology 72(8):750–759PubMedGoogle Scholar
  78. 78.
    Uggetti C, La Piana R, Orcesi S et al (2009) Aicardi-Goutieres syndrome: neuroradiologic findings and follow-up. AJNR Am J Neuroradiol 30(10):1971–1976PubMedGoogle Scholar
  79. 79.
    Uluc K, Baskan O, Yildirim KA et al (2008) Leukoencephalopathy with brain stem and spinal cord involvement and high lactate: a genetically proven case with distinct MRI findings. J Neurol Sci 273(1–2):118–122Google Scholar
  80. 80.
    Berger J, Moser HW, Forss-Petter S (2001) Leukodystrophies: recent developments in genetics, molecular biology, pathogenesis and treatment. Curr Opin Neurol 14(3):305–312PubMedGoogle Scholar
  81. 81.
    Sedel F, Tourbah A, Fontaine B et al (2008) Leukoencephalopathies associated with inborn errors of metabolism in adults. J Inherit Metab Dis 31(3):295–307PubMedGoogle Scholar
  82. 82.
    Bezman L, Moser HW (1998) Incidence of X-linked adrenoleukodystrophy and the relative frequency of its phenotypes. Am J Med Genet 76(5):415–419PubMedGoogle Scholar
  83. 83.
    Moser HW, Smith KD, Watkins PA et al (2000) The metabolic and molecular bases of inherited disease. In: Scriver CR, Beaudet AL, Sly WS, Valle D (eds) McGraw Hill, New YorkGoogle Scholar
  84. 84.
    Moser AB, Kreiter N, Bezman L et al (1999) Plasma very long chain fatty acids in 3,000 peroxisome disease patients and 29,000 controls. Ann Neurol 45(1):100–110PubMedGoogle Scholar
  85. 85.
    Singh I, Singh AK, Contreras MA (2009) Peroxisomal dysfunction in inflammatory childhood white matter disorders: an unexpected contributor to neuropathology. J Child Neurol 24(9):1147–1157PubMedGoogle Scholar
  86. 86.
    Köhler W (2008) Diagnostic algorithm for the differentiation of leukodystrophies in early MS. J Neurol 255 [Suppl 6]:123–126Google Scholar
  87. 87.
    Geel BM van, Bezman L, Loes DJ et al (2001) Evolution of phenotypes in adult male patients with X-linked adrenoleukodystrophy. Ann Neurol 49(2):186–194PubMedGoogle Scholar
  88. 88.
    Moser HW, Mahmood A, Raymond GV (2007) X-linked adrenoleukodystrophy. Nat Clin Pract Neurol 3(3):140–151PubMedGoogle Scholar
  89. 89.
    Cartier N, Hacein-Bey-Abina S, Bartholomae CC et al (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy. Science 326(5954):818–823PubMedGoogle Scholar
  90. 90.
    Bonelli RM, Cummings JL (2008) Frontal-subcortical dementias. Neurologist 14(2):100–107PubMedGoogle Scholar
  91. 91.
    Estrov Y, Scaglia F, Bodamer OA (2000) Psychiatric symptoms of inherited metabolic disease. J Inherit Metab Dis 23(1):2–6PubMedGoogle Scholar
  92. 92.
    Hyde TM, Ziegler JC, Weinberger DR (1992) Psychiatric disturbances in metachromatic leukodystrophy. Insights into the neurobiology of psychosis. Arch Neurol 49(4):401–406PubMedGoogle Scholar
  93. 93.
    Figura K von, Gieselmann V, Jaeken J (2001) Metachromatic leukodystrophy. In: Scriver CR, Beaudet AL, Valle D (eds) McGraw-Hill, New YorkGoogle Scholar
  94. 94.
    Wenger DA, Rafi MA, Luzi P et al (2000) Krabbe disease: genetic aspects and progress toward therapy. Mol Genet Metab 70(1):1–9PubMedGoogle Scholar
  95. 95.
    Husain AM, Altuwaijri M, Aldosari M (2004) Krabbe disease: neurophysiologic studies and MRI correlations. Neurology 63(4):617–620PubMedGoogle Scholar
  96. 96.
    Wang C, Melberg A, Weis J et al (2007) The earliest MR imaging and proton MR spectroscopy abnormalities in adult-onset Krabbe disease. Acta Neurol Scand 116(4):268–272PubMedGoogle Scholar
  97. 97.
    Tullu MS, Muranjan MN, Kondurkar PP, Bharucha BA (2000) Krabbe disease–clinical profile. Indian Pediatr 37(9):939–946PubMedGoogle Scholar
  98. 98.
    Martino S, Tiribuzi R, Tortori A et al (2009) Specific determination of beta-galactocerebrosidase activity via competitive inhibition of beta-galactosidase. Clin Chem 55(3):541–548PubMedGoogle Scholar
  99. 99.
    Zakharova E, Boukina TM (2008) Gene symbol: GALC. disease: Krabbe disease. Hum Genet 124(3):299Google Scholar
  100. 100.
    D’Angelo MG, Bresolin N (2006) Cognitive impairment in neuromuscular disorders. Muscle Nerve 34(1):16–33Google Scholar
  101. 101.
    Krim E, Vital A, Macia F et al (2005) Atypical parkinsonism combining alpha-synuclein inclusions and polyglucosan body disease. Mov Disord 20(2):200–204PubMedGoogle Scholar
  102. 102.
    Moses SW, Parvari R (2002) The variable presentations of glycogen storage disease type IV: a review of clinical, enzymatic and molecular studies. Curr Mol Med 2(2):177–188PubMedGoogle Scholar
  103. 103.
    Berkhoff M, Weis J, Schroth G, Sturzenegger M (2001) Extensive white-matter changes in case of adult polyglucosan body disease. Neuroradiology 43(3):234–236PubMedGoogle Scholar
  104. 104.
    Tournier-Lasserve E, Joutel A, Melki J et al (1993) Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy maps to chromosome 19q12. Nat Genet 3(3):256–259PubMedGoogle Scholar
  105. 105.
    Dichgans M, Mayer M, Uttner I et al (1998) The phenotypic spectrum of CADASIL: clinical findings in 102 cases. Ann Neurol 44(5):731–739PubMedGoogle Scholar
  106. 106.
    Joutel A, Corpechot C, Ducros A et al (1996) Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 383(6602):707–710PubMedGoogle Scholar
  107. 107.
    Chabriat H, Joutel A, Dichgans M et al (2009) Cadasil. Lancet Neurol 8(7):643–653PubMedGoogle Scholar
  108. 108.
    Viswanathan A, Godin O, Jouvent E et al (2008) Impact of MRI markers in subcortical vascular dementia: A multi-modal analysis in CADASIL. Neurobiol AgingGoogle Scholar
  109. 109.
    Dichgans M (2007) Genetics of ischaemic stroke. Lancet Neurol 6(2):149–161PubMedGoogle Scholar
  110. 110.
    Benisty S, Hernandez K, Viswanathan A et al (2008) Diagnostic criteria of vascular dementia in CADASIL. Stroke 39(3):838–844PubMedGoogle Scholar
  111. 111.
    Riecker A, Nagele T, Henneke M, Schols L (2007) Late onset vanishing white matter disease. J Neurol 254(4):544–545PubMedGoogle Scholar
  112. 112.
    Scheper GC, Klok T van der, Andel RJ van et al (2007) Mitochondrial aspartyl-tRNA synthetase deficiency causes leukoencephalopathy with brain stem and spinal cord involvement and lactate elevation. Nat Genet 39(4):534–539PubMedGoogle Scholar
  113. 113.
    Blattner R, Von Moers A, Leegwater PA et al (2003) Clinical and genetic heterogeneity in megalencephalic leukoencephalopathy with subcortical cysts (MLC). Neuropediatrics 34(4):215–218PubMedGoogle Scholar
  114. 114.
    Jerbi Omezzine S, Ben Ameur H, Bousoffara R et al (2008) Megalencephalic leukoencephalopathy with subcortical cysts: report of 4 new cases. J Radiol 89(7–8/1):891–894Google Scholar
  115. 115.
    Ptacek LJ, Fu YH, Koeppen A (2006) The dominant form of vanishing white matter-like leukoencephalopathy represents autosomal dominant leukodystrophy. Ann Neurol 59(2):434PubMedGoogle Scholar
  116. 116.
    Eldridge R, Anayiotos CP, Schlesinger S et al (1984) Hereditary adult-onset leukodystrophy simulating chronic progressive multiple sclerosis. N Engl J Med 311(15):948–953PubMedCrossRefGoogle Scholar
  117. 117.
    Padiath QS, Saigoh K, Schiffmann R et al (2006) Lamin B1 duplications cause autosomal dominant leukodystrophy. Nat Genet 38(10):1114–1123PubMedGoogle Scholar
  118. 118.
    Melberg A, Hallberg L, Kalimo H, Raininko R (2006) MR characteristics and neuropathology in adult-onset autosomal dominant leukodystrophy with autonomic symptoms. AJNR Am J Neuroradiol 27(4):904–911PubMedGoogle Scholar
  119. 119.
    Knaap MS van der, Valk J, Neeling N de, Nauta JJ (1991) Pattern recognition in magnetic resonance imaging of white matter disorders in children and young adults. Neuroradiology 33(6):478–493PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Klinik für NeurologieMarienkrankenhaus HamburgHamburgDeutschland
  2. 2.Klinik für Neurologie und neurologische IntensivmedizinFachkrankenhaus HubertusburgWermsdorfDeutschland

Personalised recommendations