Der Nervenarzt

, Volume 81, Issue 1, pp 32–38 | Cite as

Metaanalysen in der klinischen Hirnforschung

Leitthema

Zusammenfassung

Die PET- und fMRT-Bildgebung hat zu einem immensen Zuwachs an Befunden über die Lokalisation motorischer, kognitiver und affektiver Prozesse im menschlichen Gehirn geführt. Es besteht jedoch eine deutliche Diskrepanz zwischen der großen Zahl verfügbarer Studien und der eingeschränkten Aussagekraft jedes einzelnen Experiments. Um diese Vielzahl an Befunden möglichst vollständig objektiv zu integrieren, bieten sich quantitative, koordinatenbasierte Metaanalysen an. Es existiert eine Reihe von verschiedenen Verfahren zu koordinatenbasierten voxelweisen Metaanalysen, von denen sich jedoch die „activation likelihood estimation“ (ALE) weitgehend durchgesetzt hat. Der Beitrag beschreibt die Grundlagen, Methoden und statistische Auswertung der ALE-Metaanalysen sowie ihr Potenzial für die neurowissenschaftliche Grundlagenforschung und die klinische Hirnforschung.

Schlüsselwörter

Positronenemissionstomographie Funktionelle Bildgebung ALE-Metaanalyse Methodik Statistik 

Meta-analyses in clinical brain research

Summary

Positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) have brought about an immense increase in findings on the localization of motor, cognitive, and affective processes in the human brain. However, considerable discrepancy still exists between the multitude of available studies and the limited validity of the individual experiments. Quantitative, coordinate-based meta-analyses are suited to objectively integrate these numerous findings as completely as possible. There are a number of different methods for coordinate-based voxel-wise meta-analyses, but the technique of“activation likelihood estimation” (ALE) has largely prevailed. This contribution describes the principles, methods, and statistical analysis of ALE meta-analyses and their potential for basic research in neuroscience and clinical brain research.

Keywords

Positron emission tomography Functional imaging ALE meta-analysis Methodology Statistics 

Literatur

  1. 1.
    Derrfuss J, Mar RA (2009) Lost in localization: the need for a universal coordinate database. Neuroimage 48:1–7CrossRefPubMedGoogle Scholar
  2. 2.
    Zandbelt BB, Gladwin TE, Raemaekers M et al (2008) Within-subject variation in BOLD-fMRI signal changes across repeated measurements: quantification and implications for sample size. Neuroimage 42:196–206CrossRefPubMedGoogle Scholar
  3. 3.
    Stark CE, Squire LR (2001) When zero is not zero: the problem of ambiguous baseline conditions in fMRI. Proc Natl Acad Sci U S A 98:12760–12766CrossRefPubMedGoogle Scholar
  4. 4.
    Kiebel S, Holmes AP (2003) The General Linear Model. In: Frackowiak RS, Friston KJ, Frith CD et al (eds) Human Brain Function. Academic Press, pp 725–760Google Scholar
  5. 5.
    Evans AC, Marrett S, Neelin P et al (1992) Anatomical mapping of functional activation in stereotactic coordinate space. Neuroimage 1:43–53CrossRefPubMedGoogle Scholar
  6. 6.
    Poldrack RA, Fletcher PC, Henson RN et al (2008) Guidelines for reporting an fMRI study. Neuroimage 40:409–414CrossRefPubMedGoogle Scholar
  7. 7.
    Schilbach L, Eickhoff SB, Rotarska-Jagiela A et al (2008) Minds at rest? Social cognition as the default mode of cognizing and its putative relationship to the „default system“ of the brain. Conscious Cogn 17:457–467CrossRefPubMedGoogle Scholar
  8. 8.
    Salimi-Khorshidi G, Smith SM, Keltner JR et al (2009) Meta-analysis of neuroimaging data: a comparison of image-based and coordinate-based pooling of studies. Neuroimage 45:810–823CrossRefPubMedGoogle Scholar
  9. 9.
    Laird AR, Eickhoff SB, Kurth F et al (2009) ALE meta-analysis workflows via the brainmap database: progress towards a probabilistic functional brain atlas. Front Neuroinformatics 3:23PubMedGoogle Scholar
  10. 10.
    Wager TD, Lindquist M, Kaplan L (2007) Meta-analysis of functional neuroimaging data: Current and future directions. Soc Cogn Affectiv Neurosci 2:150–158CrossRefGoogle Scholar
  11. 11.
    Turkeltaub PE, Eden GF, Jones KM, Zeffiro TA (2002) Meta-analysis of the functional neuroanatomy of single-word reading: method and validation. Neuroimage 16:765–780CrossRefPubMedGoogle Scholar
  12. 12.
    Fox PT, Lancaster JL (2002) Opinion: Mapping context and content: the BrainMap model. Nat Rev Neurosci 3:319–321CrossRefPubMedGoogle Scholar
  13. 13.
    Eickhoff SB, Laird AR, Grefkes C et al (2009) Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: a random-effects approach based on empirical estimates of spatial uncertainty. Hum Brain Mapp (in press)Google Scholar
  14. 14.
    Laird AR, Fox PM, Price CJ et al (2005) ALE meta-analysis: controlling the false discovery rate and performing statistical contrasts. Hum Brain Mapp 25:155–164CrossRefPubMedGoogle Scholar
  15. 15.
    Zilles K, Schleicher A, Palomero-Gallagher N, Amunts K (2002) Quantitative analysis of cyto- and receptor architecture of the human brain. In: Mazziotta J, Toga A (eds) Brain Mapping, the methods. Elsevier, pp 573–602Google Scholar
  16. 16.
    Eickhoff SB, Stephan KE, Mohlberg H et al (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25:1325–1335CrossRefPubMedGoogle Scholar
  17. 17.
    Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006) The human parietal operculum. ii. stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16:268–279CrossRefPubMedGoogle Scholar
  18. 18.
    Laird AR, Eickhoff SB, Li K et al (2009) Investigating the functional heterogeneity of the default mode network using coordinate-based meta-analytic modeling. J Neurosci 29:14496–14505CrossRefPubMedGoogle Scholar
  19. 19.
    Glahn DC, Ragland JD, Abramoff A et al (2005) Beyond hypofrontality: a quantitative meta-analysis of functional neuroimaging studies of working memory in schizophrenia. Hum Brain Mapp 25:60–69CrossRefPubMedGoogle Scholar
  20. 20.
    Fitzgerald PB, Laird AR, Maller J, Daskalakis ZJ (2008) A meta-analytic study of changes in brain activation in depression. Hum Brain Mapp 29:683–695CrossRefPubMedGoogle Scholar
  21. 21.
    Ellison-Wright I, Bullmore E (2009) Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr Res 108:3–10CrossRefPubMedGoogle Scholar
  22. 22.
    Chan RC, Di X, McAlonan GM, Gong QY (2009) Brain anatomical abnormalities in high-risk individuals, first-episode, and chronic schizophrenia: an activation likelihood estimation meta-analysis of illness progression. Schizophr Bull (in press)Google Scholar

Copyright information

© Springer Medizin Verlag 2010

Authors and Affiliations

  • S.B. Eickhoff
    • 1
    • 2
    • 3
  • T. Nickl-Jockschat
    • 1
    • 4
  • F. Kurth
    • 2
  1. 1.Klinik für Psychiatrie und PsychotherapieMedizinische Fakultät, RWTH AachenAachenDeutschland
  2. 2.Institut für Neurowissenschaften und Medizin (INM-2)Forschungszentrum JülichJülichDeutschand
  3. 3.Translational Brain MedicineJülich Aachen Research AllianceJülichDeutschland
  4. 4.IRTG 1328AachenDeutschland

Personalised recommendations