Der Nervenarzt

, 79:1399 | Cite as

Therapeutische Ultraschallbehandlung des akuten Hirnarterienverschlusses

Übersichten

Zusammenfassung

Die durch Ultraschall beschleunigte beziehungsweise induzierte Gefäßrekanalisation, die so genannte Sonothrombolyse, stellt ein neuartiges Therapiekonzept in der Schlaganfallbehandlung dar. Verschiedene experimentelle und klinische Studien belegen die synergistischen Effekte, die sich durch gleichzeitige Behandlung mit Ultraschall und einem Fibrinolytikum erzielen lassen. Gleichzeitig könnte ein rt-PA („recombinant tissue plasmonigen activator“) -unabhängiger Einsatz zu einer Verbesserung der Prognose bei Patienten mit Kontraindikationen für eine Fibrinolytikabehandlung führen. Durch zusätzliche Gabe von Echosignalverstärkern lässt sich das thrombolytische Potenzial des Ultraschalls weiter steigern. Neben dem Wirksamkeitsnachweis kommt dem Nachweis einer ausreichenden Behandlungssicherheit bei der Entwicklung von Therapiegeräten eine zentrale Bedeutung zu. Die vorliegende Arbeit gibt eine Übersicht über den gegenwärtigen klinischen und experimentellen Stand der Entwicklung dieses Therapiekonzeptes.

Schlüsselwörter

Schlaganfall Thrombolyse Ultraschall Sonothrombolyse 

Therapeutic ultrasound of acute cerebral artery occlusion

Summary

Ultrasound-accelerated recanalisation of acute arterial occlusion, referred to as sonothrombolysis, represents a novel therapeutic strategy in acute stroke treatment. Different clinical and experimental studies document synergistic effects between ultrasound and fibrinolytic agents for dissolving blood clots. The therapeutic application of ultrasound without a fibrinolytic drug may improve recanalisation and outcome in patients with contraindications to fibrinolysis. Investigators have shown that the combination with echo contrast agents further improves the thrombolytic potential of ultrasound. This work summarizes the current clinical and experimental knowledge on this therapeutic stroke concept.

Keywords

Stroke Thrombolysis Ultrasound Sonothrombolysis 

Literatur

  1. 1.
    Akiyama M, Ishibashi T, Yamada T et al. (1998) Low-frequency ultrasound penetrates the cranium and enhances thrombolysis in vitro. Neurosurgery 43: 828–832PubMedCrossRefGoogle Scholar
  2. 2.
    Alexandrov AV, Demchuk AM, Felberg RA et al. (2000) High rate of complete recanalization and dramatic clinical recovery during tPA infusion when continuously monitored with 2-MHz transcranial doppler monitoring. Stroke 31: 610–614PubMedGoogle Scholar
  3. 3.
    Alexandrov AV, Molina CA, Grotta JC et al. (2004) Ultrasound-enhanced systemic thrombolysis for acute ischemic stroke. N Engl J Med 351: 2170–2178PubMedCrossRefGoogle Scholar
  4. 4.
    Allendoerfer J, Goertler M, von Reutern GM (2006) Prognostic relevance of ultra-early doppler sonography in acute ischaemic stroke: a prospective multicentre study. Lancet Neurol 5: 835–840PubMedCrossRefGoogle Scholar
  5. 5.
    Alonso A, Della Martina A, Stroick M et al. (2007) Molecular imaging of human thrombus with novel abciximab immunobubbles and ultrasound. Stroke 38: 1508–1514PubMedCrossRefGoogle Scholar
  6. 6.
    Atar S, Luo H, Nagai T et al. (2001) Arterial thrombus dissolution in vivo using a transducer-tipped, high-frequency ultrasound catheter and local low-dose urokinase delivery. J Endovasc Ther 8: 282–290PubMedCrossRefGoogle Scholar
  7. 7.
    Azuma T, Kawabata K, Umemura S et al. (2004) Standing-wave formation in water surrounded by cranium radiated from 500 kHz ultrasonic sector probe. Cerebrovasc Dis 17: 7–8CrossRefGoogle Scholar
  8. 8.
    Behrens S, Daffertshofer M, Spiegel D et al. (1999) Low-frequency, low-intensity ultrasound accelerates thrombolysis through the skull. Ultrasound Med Biol 25: 269–273PubMedCrossRefGoogle Scholar
  9. 9.
    Behrens S, Spengos K, Daffertshofer M et al. (2001) Transcranial ultrasound-improved thrombolysis: diagnostic vs. therapeutic ultrasound. Ultrasound Med Biol 27: 1683–1689PubMedCrossRefGoogle Scholar
  10. 10.
    Birnbaum Y, Luo H, Nagai T et al. (1998) Noninvasive in vivo clot dissolution without a thrombolytic drug: recanalization of thrombosed iliofemoral arteries by transcutaneous ultrasound combined with intravenous infusion of microbubbles. Circulation 97: 130–134PubMedGoogle Scholar
  11. 11.
    Braaten JV, Goss RA, Francis CW (1997) Ultrasound reversibly disaggregates fibrin fibers. Thromb Haemost 78: 1063–1068PubMedGoogle Scholar
  12. 12.
    Cintas P, Nguyen F, Boneu B et al. (2004) Enhancement of enzymatic fibrinolysis with 2-MHz ultrasound and microbubbles. J Thromb Haemost 2: 1163–1166PubMedCrossRefGoogle Scholar
  13. 13.
    The Interventional Management of Stroke Study (2004) Combined intravenous and intra-arterial recanalization for acute ischemic stroke. Stroke 35: 904–911CrossRefGoogle Scholar
  14. 14.
    Culp WC, Porter TR, Lowery J et al. (2004) Intracranial clot lysis with intravenous microbubbles and transcranial ultrasound in swine. Stroke 35: 2407–2411PubMedCrossRefGoogle Scholar
  15. 15.
    Daffertshofer M, Gass A, Ringleb P et al. (2005) Transcranial low-frequency ultrasound-mediated thrombolysis in brain ischemia: increased risk of hemorrhage with combined ultrasound and tissue plasminogen activator: results of a phase II clinical trial. Stroke 36: 1441–1446PubMedCrossRefGoogle Scholar
  16. 16.
    Datta S, Coussios CC, Ammi AY et al. (2008) Ultrasound-enhanced thrombolysis using Definity™ as a cavitation nucleation agent. Ultrasound Med Biol (in press)Google Scholar
  17. 17.
    Datta S, Coussios CC, McAdory LE et al. (2006) Correlation of cavitation with ultrasound enhancement of thrombolysis. Ultrasound Med Biol 32: 1257–1267PubMedCrossRefGoogle Scholar
  18. 18.
    Eggers J, Seidel G, Koch B et al. (2005) Sonothrombolysis in acute ischemic stroke for patients ineligible for rt-PA. Neurology 64: 1052–1054PubMedGoogle Scholar
  19. 19.
    Eggers J, Koch B, Meyer K et al. (2003) Effect of ultrasound on thrombolysis of middle cerebral artery occlusion. Ann Neurol 53: 797–800PubMedCrossRefGoogle Scholar
  20. 20.
    Eggers J, Koenig RI, Koch B et al. (2008) Sonothrombolysis with transcranial color-coded sonography and rt-PA in acute middle cerebral artery main stem occlusion – results from a randomized study. Stroke 39: 1470–1475PubMedCrossRefGoogle Scholar
  21. 21.
    Fatar M, Stroick M, Griebe M et al. (2006) Brain temperature during 340-kHz pulsed ultrasound insonation: a safety study for sonothrombolysis. Stroke 37: 1883–1887PubMedCrossRefGoogle Scholar
  22. 22.
    Francis CW, Blinc A, Lee S et al. (1995) Ultrasound accelerates transport of recombinant tissue plasminogen activator into clots. Ultrasound Med Biol 21: 419–424PubMedCrossRefGoogle Scholar
  23. 23.
    Gerriets T, Walberer M, Nedelmann M et al. (2007) Blood-brain barrier disruption by low-frequency ultrasound. Stroke 38: 251PubMedCrossRefGoogle Scholar
  24. 24.
    Gerriets T, Goertler M, Stolz E et al. (2002) Feasibility and validity of transcranial duplex sonography in patients with acute stroke. J Neurol Neurosurg Psychiatry 73: 17–20PubMedCrossRefGoogle Scholar
  25. 25.
    Hacke W, Donnan G, Fieschi C et al. (2004) Association of outcome with early stroke treatment: pooled analysis of ATLANTIS, ECASS, and NINDS rt-PA stroke trials. Lancet 363: 768–774PubMedCrossRefGoogle Scholar
  26. 26.
    Hajat C, Hajat S, Sharma P (2000) Effects of poststroke pyrexia on stroke outcome: a meta-analysis of studies in patients. Stroke 31: 410–414PubMedGoogle Scholar
  27. 27.
    King S, Khatri P, Carrozella J et al. (2007) Anterior cerebral artery emboli in combined intravenous and intra-arterial rtPA treatment of acute ischemic stroke in the IMS I and II trials. Am J Neuroradiol 28: 1890–1894PubMedCrossRefGoogle Scholar
  28. 28.
    Larrue V, Viguier A, Arnaud C et al. (2007) Transcranial ultrasound combined with intravenous microbubbles and tissue plasminogen activator for acute ischemic stroke: A randomised controlled study. Stroke 38: 472Google Scholar
  29. 29.
    Meunier JM, Holland CK, Lindsell CJ et al. (2007) Duty cycle dependence of ultrasound enhanced thrombolysis in a human clot model. Ultrasound Med Biol 33: 576–583PubMedCrossRefGoogle Scholar
  30. 30.
    Mizushige K, Kondo I, Ohmori K et al. (1999) Enhancement of ultrasound-accelerated thrombolysis by echo contrast agents: dependence on microbubble structure. Ultrasound Med Biol 25: 1431–1437PubMedCrossRefGoogle Scholar
  31. 31.
    Molina CA, Ribo M, Rubiera M et al. (2006) Microbubble administration accelerates clot lysis during continuous 2-MHz ultrasound monitoring in stroke patients treated with intravenous tissue plasminogen activator. Stroke 37: 425–429PubMedCrossRefGoogle Scholar
  32. 32.
    Mori E, Yoneda Y, Tabuchi M et al. (1992) Intravenous recombinant tissue plasminogen activator in acute carotid artery territory stroke. Neurology 42:976–982PubMedGoogle Scholar
  33. 33.
    Nakagawa K, Ishibashi T, Matsushima M et al. (2007) Does long-term continuous transcranial doppler monitoring require a pause for safer use? Cerebrovasc Dis 24: 27–34PubMedCrossRefGoogle Scholar
  34. 34.
    Nedelmann M, Eicke BM, Nolle F et al. (2002) Ultraschallkontrastmittel Levovist® steigert den thrombolytischen Effekt von Ultraschall. Med Klin 97: 216–220CrossRefGoogle Scholar
  35. 35.
    Nedelmann M, Eicke BM, Lierke EG et al. (2002) Low-frequency ultrasound induces nonenzymatic thrombolysis in vitro. J Ultrasound Med 21: 649–656PubMedGoogle Scholar
  36. 36.
    Nedelmann M, Brandt C, Schneider F et al. (2005) Ultrasound-induced blood clot dissolution without a thrombolytic drug is more effective with lower frequencies. Cerebrovasc Dis 20: 18–22PubMedCrossRefGoogle Scholar
  37. 37.
    Nedelmann M, Reuter P, Walberer M et al. (2008) Detrimental effects of 60 kHz sonothrombolysis in rats with middle cerebral artery occlusion. Ultrasound Med Biol (in press)Google Scholar
  38. 38.
    Nishioka T, Luo H, Fishbein MC et al. (1997) Dissolution of thrombotic arterial occlusion by high intensity, low frequency ultrasound and dodecafluoropentane emulsion: an in vitro and in vivo study. J Am Coll Cardiol 30: 561–568PubMedCrossRefGoogle Scholar
  39. 39.
    Perren F, Loulidi J, Poglia D et al. (2007) Microbubble potentiated transcranial duplex ultrasound enhances IV thrombolysis in acute stroke. J Thromb Thrombolysis [epub ehead of print]Google Scholar
  40. 40.
    Pfaffenberger S, Devcic-Kuhar B, Kollmann C et al. (2005) Can a commercial diagnostic ultrasound device accelerate thrombolysis? An in vitro skull model. Stroke 36: 124–128PubMedCrossRefGoogle Scholar
  41. 41.
    Recommendations for standards regarding preclinical neuroprotective and restorative drug development (1999) Stroke 30: 2752–2758Google Scholar
  42. 42.
    Rha JH, Saver JL (2007) The impact of recanalization on ischemic stroke outcome: a meta-analysis. Stroke 38: 967–973PubMedCrossRefGoogle Scholar
  43. 43.
    Schneider F, Gerriets T, Walberer M et al. (2006) Brain edema and intracerebral necrosis caused by transcranial low-frequency 20-kHz ultrasound: a safety study in rats. Stroke 37: 1301–1306PubMedCrossRefGoogle Scholar
  44. 44.
    Suchkova VN, Baggs RB, Sahni SK et al. (2002) Ultrasound improves tissue perfusion in ischemic tissue through a nitric oxide dependent mechanism. Thromb Haemost 88: 865–870PubMedGoogle Scholar
  45. 45.
    Tachibana K, Tachibana S (1995) Albumin microbubble echo-contrast material as an enhancer for ultrasound accelerated thrombolysis. Circulation 92: 1148–1150PubMedGoogle Scholar
  46. 46.
    Tiukinhoy-Laing SD, Huang S, Klegerman M et al. (2007) Ultrasound-facilitated thrombolysis using tissue-plasminogen activator-loaded echogenic liposomes. Thromb Res 119: 777–784PubMedCrossRefGoogle Scholar
  47. 47.
    Trubestein G, Engel C, Etzel F et al. (1976) Thrombolysis by ultrasound. Clin Sci Mol Med Suppl 3: 697–698Google Scholar
  48. 48.
    Voie A, Amory D, Amory J et al. (2002) Ultrasound and tPA enhanced thrombolysis: influence of ultrasound frequency and pulse length. Cerebrovasc Dis 13: 42CrossRefGoogle Scholar
  49. 49.
    Walberer M, Nedelmann T, Schiel D et al. (2007) Ultrasound-thrombolysis with 488 kHz – safety studies with an MRI-based rat stroke model. Cerebrovasc Dis 23: 137CrossRefGoogle Scholar
  50. 50.
    Wang Z, Moehring MA, Voie AH et al. (2008) In vitro evaluation of dual mode ultrasonic thrombolysis method for transcranial application with an occlusive thrombosis model. Ultrasound Med Biol 34: 96–102PubMedCrossRefGoogle Scholar
  51. 51.
    Wilhelm-Schwenkmezger T, Pittermann P, Zajonz K et al. (2007) Therapeutic application of 20 kHz transcranial ultrasound in an embolic middle cerebral artery occlusion model in rats: safety concerns. Stroke 38: 1031–1035PubMedCrossRefGoogle Scholar
  52. 52.
    Wunderlich MT, Goertler M, Postert T et al. (2007) Recanalization after intravenous thrombolysis: does a recanalization time window exist? Neurology 68: 1364–1368PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Klinik für NeurologieJustus-Liebig-Universität GießenGießenDeutschland

Personalised recommendations