Der Nervenarzt

, Volume 79, Issue 12, pp 1440–1445 | Cite as

Neue Sicht des kortiko-striato-thalamo-kortikalen Regelkreises bei M. Parkinson

Aktuelles

Zusammenfassung

Die traditionelle Darstellung des kortiko-striato-thalamo-kortikalen Regelkreises mit der Unterscheidbarkeit eines direkten und indirekten Weges erleichtert das Verständnis der im Verlauf des sporadischen Morbus Parkinson entstehenden motorischen Fehlfunktionen. Als krankheitsverursachende Veränderung wird lediglich die durch Ausfall von Neuronen der Substantia nigra bewirkte Reduktion von Dopamin im Striatum in Betracht gezogen. Der Parkinson-assoziierte pathologische Prozess ist jedoch umfangreicher und umfasst zahlreiche nichtdopaminerge Zentren, welche die Abläufe im Regelkreis ebenfalls beeinflussen und daher in einem neuen Diagramm Berücksichtigung finden sollten. Parkinsonassoziierte Schäden in nichtdopaminergen Zentren finden zunehmend Beachtung in der klinischen Praxis.

Schlüsselwörter

Morbus Parkinson α-Synuklein Nucleus tegmentalis pedunculopontinus Nucleus subthalamicus Striatum 

A new look at the corticostriatal-thalamocortical circuit in sporadic Parkinson’s disease

Summary

The traditional model of corticostriatal-thalamocortical projections, with indirect and direct pathways, provides a simplified and useful explanation for the motor deficits (hypokinesia, bradykinesia) that develop in the course of sporadic Parkinson’s disease. In the classic model, major emphasis is placed on the dopamine deficiency in the dorsal striatum that occurs as a result of neuronal loss in the substantia nigra of the midbrain. Nevertheless, because the pathological process that underlies Parkinson’s disease also involves many key nondopaminergic connectivities, a revised model is needed that incorporates these projections. The focus on damage to nondopaminergic and extranigral sites is becoming increasingly important for clinical practice.

Keywords

Parkinson’s disease α-Synuclein Pedunculopontine tegmental nucleus Subthalamic nucleus Striatum 

Notes

Danksagung

Diese Arbeit entstand mit dankenswerter Unterstützung durch die Deutsche Forschungsgemeinschaft und die Michael J. Fox Foundation for Parkinson’s Research. Der besondere Dank der Autoren gebührt Frau Inge Szasz-Jacobi für die Anfertigung der Graphiken.

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Ahlskog JE (2007) Beating a dead horse: Dopamine and Parkinson’s disease. Neurology 69: 1701–1711PubMedCrossRefGoogle Scholar
  2. 2.
    Albin RL, Young AB, Peney JB (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12: 366–375PubMedCrossRefGoogle Scholar
  3. 3.
    Alexander GE, Crutcher MD, DeLong MR (1990) Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, „prefrontal“ and „limbic“ functions. Prog Brain Res 85: 119–146PubMedCrossRefGoogle Scholar
  4. 4.
    Benabid AL (2003) Deep brain stimulation for Parkinson’s disease. Curr Opin Neurobiol 13: 696–706PubMedCrossRefGoogle Scholar
  5. 5.
    Blandini F, Nappi G, Tassorelli C, Martignioni E (2000) Functional changes of the basal ganglia circuitry in Parkinson’s disease. Prog Neurobiol 62: 63–88PubMedCrossRefGoogle Scholar
  6. 6.
    Braak H, Del Tredici K (2008) Nervous system pathology in sporadic Parkinson’s disease. Neurology 70: 1916–1925PubMedCrossRefGoogle Scholar
  7. 7.
    Braak H, Del Tredici K (2008) Cortico-basal ganglia-cortical circuitry in Parkinson’s disease reconsidered. Exp Neurology 212: 226–229CrossRefGoogle Scholar
  8. 8.
    Braak H, Del Tredici K, Rüb U et al. (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24: 197–211PubMedCrossRefGoogle Scholar
  9. 9.
    Chesselet MF, Delfs JM (1996) Basal ganglia and movement disorders: an update. Trends Neurosci 19: 417–422PubMedGoogle Scholar
  10. 10.
    DeLong MR, Wichmann T (2007) Circuits and circuit disorders of the basal ganglia. Arch Neurol 64: 20–24PubMedCrossRefGoogle Scholar
  11. 11.
    Del Tredici K, Rüb U, Vos RAI de et al. (2002) Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 61: 413–426Google Scholar
  12. 12.
    Deutch AY (2006) Striatal plasticity in parkinsonism: dystrophic changes in medium spiny neurons and progression in Parkinson’s disease. J Neural Transm [Suppl] 70: 67–70Google Scholar
  13. 13.
    Gerfen CR (2006) Indirect-pathway neurons lose their spines in Parkinson’s disease. Nat Neurosci 9: 157–158PubMedCrossRefGoogle Scholar
  14. 14.
    Groenewegen HJ, Berendse HW (1994) The specificity of the ‚nonspecific‘ midline and intralaminar thalamic nuclei. Trends Neurosci 17: 52–57PubMedCrossRefGoogle Scholar
  15. 15.
    Kopell BH, Rezai AR, Chang JW, Vitek JL (2006) Anatomy and physiology of the basal ganglia: implications for deep brain stimulation for Parkinson’s disease. Mov Disord [Suppl 14] 21: 238–246Google Scholar
  16. 16.
    Lang AE, Obeso JA (2004) Current challenges in Parkinson’s disease: restoring the nigrostriatal dopamine system is not enough. Lancet Neurol 3: 309–316PubMedCrossRefGoogle Scholar
  17. 17.
    Langston JW (2006) The Parkinson’s complex: Parkinsonism is just the tip of the iceberg. Ann Neurol 59: 591–596PubMedCrossRefGoogle Scholar
  18. 18.
    Lee MS, Rinne JO, Marsden CD (2000) The pedunculopontine nucleus: its role in the genesis of movement disorders. Yonsei Med J 41: 167–184PubMedGoogle Scholar
  19. 19.
    McNeill TH, Brown SA, Rafols JA, Shoulson I (1988) Atrophy of medium spiny striatal dendrites in advanced Parkinson’s disease. Brain Res 455: 148–152PubMedCrossRefGoogle Scholar
  20. 20.
    Mena-Segovia J, Bolam JP, Magill PJ (2004) Pedunculopontine nucleus and basal ganglia: distant relatives or part of the same familiy? Trends Neurosci 27: 585–588PubMedCrossRefGoogle Scholar
  21. 21.
    Neely MD, Schmidt DE, Deutch AY (2007) Cortical regulation of dopamine depletion-induced dendritic spine loss in striatal medium spiny neurons. Neuroscience 149: 457–464PubMedCrossRefGoogle Scholar
  22. 22.
    Pahapill PA, Lozano AM (2000) The pedunculopontine nucleus and Parkinson’s disease. Brain 123: 1767–1783PubMedCrossRefGoogle Scholar
  23. 23.
    Parent A, Cicchetti F (1998) The current model of basal ganglia organization under scrutiny. Mov Disord 13: 199–202PubMedCrossRefGoogle Scholar
  24. 24.
    Parent A, Hazrati LN (1995) Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Res Rev 20: 91–127PubMedCrossRefGoogle Scholar
  25. 25.
    Rüb U, Del Tredici K, Schultz C et al. (2002) Parkinson’s disease: the thalamic components of the limbic loop are severely impaired by α-synuclein immunopositive inclusion body pathology. Neurobiol Aging 23: 245–254PubMedCrossRefGoogle Scholar
  26. 26.
    Stephens B, Mueller AJ, Shering AF et al. (2005) Evidence of a breakdown of corticostriatal connections in Parkinson’s disease. Neuroscience 132: 741–754PubMedCrossRefGoogle Scholar
  27. 27.
    Tepper JM, Abercrombie ED, Bolam JP (2007) Basal ganglia macrocircuits. Prog Brain Res 160: 3–7PubMedCrossRefGoogle Scholar
  28. 28.
    Volkmann J (2007) Update on surgery for Parkinson’s disease. Curr Opin Neurol 20: 465–469PubMedGoogle Scholar
  29. 29.
    Winn P (2006) How best to consider the structure and function of the pedunculopontine tegmental nucleus: evidence from animal studies. J Neurol Sci 248: 234–250PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  1. 1.Institut für Klinische NeuroanatomieGoethe-Universität FrankfurtFrankfurt am MainDeutschland

Personalised recommendations