Advertisement

Der Nervenarzt

, Volume 79, Issue 4, pp 426–436 | Cite as

Kalziumkanalopathien des Menschen

Spannungsgesteuerte Ca2+-Kanäle in Ätiologie, Pathogenese und Pharmakotherapie neurologischer Krankheitsbilder
  • M. WeiergräberEmail author
  • J. Hescheler
  • T. Schneider
Übersichten
  • 175 Downloads

Zusammenfassung

Spannungsgesteuerte Ca2+-Kanäle spielen eine Schlüsselrolle bei einer Vielzahl physiologischer Prozesse. Innerhalb des letzten Jahrzehnts hat die Zahl der als sog. Ca2+-Kanalopathien definierten Krankheitsentitäten, die v.a. das neuronale und muskuläre System affizieren, dramatisch zugenommen. Beim Menschen finden sich hierbei v.a. Mutationen in den L-Typ Cav1.2- und Cav1.4-Ca2+-Kanälen sowie in den Non-L-Typ Cav2.1- und T-Typ Cav3.2-Untereinheiten. Derartige Mutationen sind mit Alterationen grundlegender elektrophysiologischer Parameter assoziiert und somit von ätiopathologischer Relevanz. Basierend auf ihrer dominanten Expression im ZNS sind Ca2+-Kanäle aber auch für Epilepsien sowie Erkrankungen aus dem neuropsychiatrischen Formenkreis von besonderer Bedeutung. In der vorliegenden Übersichtsarbeit werden die bis heute bekannten humanen Ca2+-Kanalopathien im Detail erörtert und auf pathophysiologische wie klinische Aspekte besonders eingegangen.

Schlüsselwörter

Epilepsie Kanalopathien Neuromuskulär Pharmakotherapie Spannungsgesteuerte Ca2+-Kanäle 

Human calcium channelopathies

Voltage-gated Ca2+ channels in etiology, pathogenesis, and pharmacotherapy of neurologic disorders

Summary

Voltage-gated calcium channels are key components in a variety of physiological processes. Within the last decade an increasing number of voltage-gated Ca2+ channelopathies in both humans and animal models has been described, most of which are related to the neurologic and muscular system. In humans, mutations were found in L-type Cav1.2 and Cav1.4 Ca2+ channels as well as the non-L-type Cav2.1 and T-type Cav3.2 channels, resulting in altered electrophysiologic properties. Based on their widespread distribution within the CNS, voltage-gated calcium channels are of particular importance in the etiology and pathogenesis of various forms of epilepsy and neuropsychiatric disorders. In this review we characterise the different human Ca2+ channelopathies known so far, further illuminating basic pathophysiologic mechanisms and clinical aspects.

Keywords

Channelopathies Epilepsy Neuromuscular Pharmacotherapy Voltage-gated Ca2+ channels 

Notes

Interessenkonflikt

Der korrespondierende Autor gibt an, dass kein Interessenkonflikt besteht.

Literatur

  1. 1.
    Beam KG, Knudson CM, Powell JA (1986) A lethal mutation in mice eliminates the slow calcium current in skeletal muscle cells. Nature 320: 168–170PubMedCrossRefGoogle Scholar
  2. 2.
    Catterall WA, Perez-Reyes E, Snutch TP, Striessnig J (2005) International Union of Pharmacology. XLVIII. Nomenclature and structure-function relationships of voltage-gated calcium channels. Pharmacol Rev 57: 411–425PubMedCrossRefGoogle Scholar
  3. 3.
    Chen CC, Lamping KG, Nuno DW et al. (2003) Abnormal coronary function in mice deficient in alpha1H T-type Ca2+ channels. Science 302: 1416–1418PubMedCrossRefGoogle Scholar
  4. 4.
    Dietrich D, Kirschstein T, Kukley M et al. (2003) Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39: 483–496PubMedCrossRefGoogle Scholar
  5. 5.
    Escayg A, De Waard M, Lee DD et al. (2000) Coding and noncoding variation of the human calcium-channel beta4- subunit gene CACNB4 in patients with idiopathic generalized epilepsy and episodic ataxia. Am J Hum Genet 66: 1531–1539PubMedCrossRefGoogle Scholar
  6. 6.
    Felix R (2005) Molecular regulation of voltage-gated Ca2+ channels. J Recept Signal Transduct Res 25: 57–71PubMedCrossRefGoogle Scholar
  7. 7.
    Felix R (2006) Calcium channelopathies. Neuromolecular Med 8: 307–318PubMedCrossRefGoogle Scholar
  8. 8.
    Imbrici P, Jaffe SL, Eunson LH et al. (2004) Dysfunction of the brain calcium channel Cav2.1 in absence epilepsy and episodic ataxia. Brain 127: 2682–2692PubMedCrossRefGoogle Scholar
  9. 9.
    Jalkanen R, Bech-Hansen NT, Tobias R et al. (2007) A Novel CACNA1F gene mutation causes Aland Island eye disease. Invest Ophthalmol Vis Sci 48: 2498–2502PubMedCrossRefGoogle Scholar
  10. 10.
    Jalkanen R, Mantyjarvi M, Tobias R et al. (2006) X linked cone-rod dystrophy, CORDX3, is caused by a mutation in the CACNA1F gene. J Med Genet 43: 699–704PubMedCrossRefGoogle Scholar
  11. 11.
    Jouvenceau A, Eunson LH, Spauschus A et al. (2001) Human epilepsy associated with dysfunction of the brain P/Q-type calcium channel. Lancet 358: 801–807PubMedCrossRefGoogle Scholar
  12. 12.
    Khosravani H, Altier C, Simms B et al. (2004) Gating effects of mutations in the Cav3.2 T-type calcium channel associated with childhood absence epilepsy. J Biol Chem 279: 9681–9684PubMedCrossRefGoogle Scholar
  13. 13.
    Khosravani H, Zamponi GW (2006) Voltage-gated calcium channels and idiopathic generalized epilepsies. Physiol Rev 86: 941–966PubMedCrossRefGoogle Scholar
  14. 14.
    Kordasiewicz HB, Thompson RM, Clark HB, Gomez CM (2006) C-termini of P/Q-type Ca2+ channel alpha1A subunits translocate to nuclei and promote polyglutamine-mediated toxicity. Hum Mol Genet 15: 1587–1599PubMedCrossRefGoogle Scholar
  15. 15.
    Kraus RL, Sinnegger MJ, Glossmann H et al. (1998) Familial hemiplegic migraine mutations change α1A Ca2+ channel kinetics. J Biol Chem 273: 5586–5590PubMedCrossRefGoogle Scholar
  16. 16.
    Li MY, Hanson RL, Zimmerman C et al. (2007) Variants in the Cav2.3 ({alpha}1E) subunit of voltage-activated Ca2+ channels are associated with insulin resistance and type 2 diabetes in Pima Indians. Diabetes 24Google Scholar
  17. 17.
    Mangoni ME, Traboulsie A, Leoni AL et al. (2006) Bradycardia and slowing of the atrioventricular conduction in mice lacking Cav3.1/alpha1G T-type calcium channels. Circ Res 98: 1422–1430PubMedCrossRefGoogle Scholar
  18. 18.
    McKeown L, Robinson P, Jones OT (2006) Molecular basis of inherited calcium channelopathies: role of mutations in pore-forming subunits. Acta Pharmacol Sin 27: 799–812PubMedCrossRefGoogle Scholar
  19. 19.
    Monnier N, Procaccio V, Stieglitz P, Lunardi J (1997) Malignant-hyperthermia susceptibility is associated with a mutation of the alpha 1-subunit of the human dihydropyridine-sensitive L-type voltage-dependent calcium-channel receptor in skeletal muscle. Am J Hum Genet 60: 1316–1325PubMedCrossRefGoogle Scholar
  20. 20.
    Perez-Reyes E (2003) Molecular physiology of low-voltage-activated T-type calcium channels. Physiol Rev 83: 117–161PubMedGoogle Scholar
  21. 21.
    Piedras-Renteria ES, Watase K, Harata N et al. (2001) Increased expression of alpha1A Ca2+ channel currents arising from expanded trinucleotide repeats in spinocerebellar ataxia type 6. J Neurosci 21: 9185–9193PubMedGoogle Scholar
  22. 22.
    Pietrobon D (2005) Function and dysfunction of synaptic calcium channels: insights from mouse models. Curr Opin Neurobiol 15: 257–265PubMedCrossRefGoogle Scholar
  23. 23.
    Pinto A, Moss F, Lang B et al. (1998) Differential effect of Lambert-Eaton myasthenic syndrome immunoglobulin on cloned neuronal voltage-gated calcium channels. Ann N Y Acad Sci 841: 687–690PubMedCrossRefGoogle Scholar
  24. 24.
    Restituito S, Thompson RM, Eliet J et al. (2000) The polyglutamine expansion in spinocerebellar ataxia type 6 causes a β subunit-specific enhanced activation of P/Q-type calcium channels in Xenopus oocytes. J Neurosci 20: 6394–6403PubMedGoogle Scholar
  25. 25.
    Splawski I, Timothy KW, Sharpe LM et al. (2004) Cav1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119: 19–31PubMedCrossRefGoogle Scholar
  26. 26.
    Splawski I, Yoo DS, Stotz SC et al. (2006) CACNA1H mutations in autism spectrum disorders. J Biol Chem 281: 22085–22091PubMedCrossRefGoogle Scholar
  27. 27.
    Striessnig J, Hoda JC, Koschak A et al. (2004) L-type Ca2+ channels in Ca2+ channelopathies. Biochem Biophys Res Commun 322: 1341–1346PubMedCrossRefGoogle Scholar
  28. 28.
    Suzuki T, Delgado-Escueta AV, Aguan K et al. (2004) Mutations in EFHC1 cause juvenile myoclonic epilepsy. Nat Genet 36: 842–849PubMedCrossRefGoogle Scholar
  29. 29.
    Wei J, Hemmings GP (2006) A further study of a possible locus for schizophrenia on the X chromosome. Biochem Biophys Res Commun 344: 1241–1245PubMedCrossRefGoogle Scholar
  30. 30.
    Weiergräber M, Henry M, Krieger A et al. (2006) Altered seizure susceptibility in mice lacking the Cav2.3 E-type Ca2+ channel. Epilepsia 47: 839–850PubMedCrossRefGoogle Scholar
  31. 31.
    Weiergräber M, Henry M, Südkamp M et al. (2005) Ablation of Cav2.3 / E-type voltage-gated calcium channel results in cardiac arrhythmia and altered autonomic control within the murine cardiovascular system. Basic Res Cardiol 100: 1–13PubMedCrossRefGoogle Scholar
  32. 32.
    Wycisk KA, Zeitz C, Feil S et al. (2006) Mutation in the auxiliary calcium-channel subunit CACNA2D4 causes autosomal recessive cone dystrophy. Am J Hum Genet 79: 973–977PubMedCrossRefGoogle Scholar
  33. 33.
    Van den Maagdenberg AM, Pietrobon D, Pizzorusso T et al. (2004) A Cacna1a knockin mi-graine mouse model with increased susceptibility to cortical spreading depression. Neuron 41: 701-710CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2008

Authors and Affiliations

  • M. Weiergräber
    • 1
    • 2
    Email author
  • J. Hescheler
    • 1
    • 2
  • T. Schneider
    • 1
    • 2
  1. 1.Institut für Neurophysiologie, Medizinische EinrichtungenUniversität zu KölnKölnDeutschland
  2. 2.Zentrum für Molekulare Medizin Köln (ZMMK)Universität zu KölnKölnDeutschland

Personalised recommendations