Der Nervenarzt

, Volume 78, Issue 10, pp 1200–1208 | Cite as

FTY720 (Fingolimod) als neue Therapiemöglichkeit der Multiplen Sklerose

  • J. Klatt
  • H.-P. HartungEmail author
  • R. HohlfeldEmail author


Sämtliche zurzeit für die Behandlung der Multiplen Sklerose zugelassenen Substanzen stehen nur in parenteraler Applikationsform zur Verfügung. Verschiedene orale Substanzen befinden sich in der klinischen Entwicklung. Eine dieser Substanzen, FTY720 (auch bekannt als Fingolimod), wird in dieser Übersicht näher beleuchtet. Es werden zunächst die biologischen Effekte von FTY720 dargestellt, im Anschluss folgen tierexperimentelle und klinische Daten. FTY720 als ein Sphingosin-1-Phosphat-Rezeptor-Agonist basiert auf einem innovativen Ansatz und greift an verschiedenen Stellen in die pathogenetische Kaskade der Multiplen Sklerose ein. In einer bislang vorliegenden Phase-II-Studie zeigt FTY720 eine viel versprechende Wirksamkeit mit einer Schubreduktion von über 50% im Vergleich zu Plazebo bei akzeptabler Verträglichkeit. Diese Ergebnisse sollen in zwei laufenden internationalen Phase-III-Studien bestätigt werden.


Multiple Sklerose Sphingosin-1-Phosphat FTY720 Fingolimod Orale Behandlung 

FTY720 (Fingolimod) as a new therapeutic option for multiple sclerosis


All currently available therapeutic options for multiple sclerosis have to be administered parenterally. Several oral substances are currently in the late clinical development stage. One of them, FTY720 (also known as fingolimod) is highlighted in this review. The biological effects of FTY720 are presented as well as animal data and first clinical data from a phase II trial in multiple sclerosis patients. The effects of FTY720 are based on an innovative approach and apparently target several key elements in the pathogenesis of multiple sclerosis. The first clinical data with FTY720 show very promising results, with a relapse reduction of over 50% compared to placebo and an acceptable safety profile. These results currently await confirmation in two international phase III studies which are recruiting patients worldwide.


Multiple sclerosis Oral treatment FTY720 Fingolimod Sphingosine-1-phosphate 



Der korrespondierende Autor weist auf folgende Beziehung/en hin: J. Klatt arbeitet in der klinischen Forschung bei der Novartis GmbH und leitet das Studienprogramm in Deutschland für FTY720. Prof. H.-P. Hartung und Prof. R. Hohlfeld sind beide als Leiter der klinischen Prüfung für FTY720 tätig und haben von der Novartis Pharma GmbH eine entsprechende Honorierung hierfür sowie für Beratungstätigkeiten erhalten.


  1. 1.
    Allende ML, Dreier JL, Mandala S et al. (2004) Expression of the sphingosine-1-phosphate receptor S1P1 on T cells controls thymic emigration. J Biol Chem 279: 15396–15401PubMedCrossRefGoogle Scholar
  2. 2.
    Archelos JJ, Storch MK, Hartung HP (2000) The role of B cells and autoantibodies in multiple sclerosis. Ann Neurol 47: 694–706PubMedCrossRefGoogle Scholar
  3. 3.
    Balatoni B, Storch MK, Swoboda EM et al. (2005) Neuropathology in MOG-induced EAE correlates with complete prevention of electrophysiological changes and clinical symptoms following oral FTY720 treatment. Poster presented at 21st meeting of the ECTRIMS, Thessaloniki, Greece, 28 September–1 October 2005Google Scholar
  4. 4.
    Balatoni B, Storch MK, Weissert R et al. (2006) Oral Fingolimod maintains and restores neuronal function in demyelinating models of multiple sclerosis, as assessed by somatosensory and visual evoked potentials. Poster presented at 22nd meeting of the ECTRIMS, Madrid, Spain, 27–30 September 2006Google Scholar
  5. 5.
    Brinkmann V, Davis MD, Heise CE et al. (2002) The immune modulator FTY720 targets sphingosine-1-receptors. J Biol Chem 277: 21453–21457PubMedCrossRefGoogle Scholar
  6. 6.
    Brinkmann V, Cyster GJ, Hla T (2004). FTY720: Sphingosine-1-phosphate receptor-1 in the control of lymphocyte egress and endothelial barrier function. Am J Transplant 4: 1019–1025PubMedCrossRefGoogle Scholar
  7. 7.
    Budde K, Schmouder RL, Nashan B et al. (2003) Pharmacodynamics of single doses of the novel immunosuppressant FTY720 in stable renal transplant patients. Am J Transplant 3: 846–854PubMedCrossRefGoogle Scholar
  8. 8.
    Chiba K, Yanagawa Y, Masubuchi Y et al. (1998) FTY720, a novel immunosuppressant, induces sequestration of circulating mature lymphocytes by acceleration of homing in rats. J Immunol 160: 5037–5044PubMedGoogle Scholar
  9. 9.
    Cysten JG (2005) Chemokines, sphingosine-1-phosphate and cell migration in secondary lymphoid organs. Annu Rev Immunol 23: 127–159CrossRefGoogle Scholar
  10. 10.
    Czeloth N, Bernhardt G, Hofmann F et al. (2005) Sphingosine-1-phosphate mediates migration of mature dendritic cells. J Immunol 175: 2960–2967PubMedGoogle Scholar
  11. 11.
    Davis MD, Clemens JJ, Macdonald TL et al. (2005) Sphingosine-1-phosphate analogs as receptor antagonists. J Biol Chem 280: 9833–9841PubMedCrossRefGoogle Scholar
  12. 12.
    Edsall LC, Pirianov GG, Spiegel S (1997) Involvement of sphingosine-1-phosphate in nerve growth factor-mediated neuronal survival and differentiation. J Neurosci 17: 6952–6960PubMedGoogle Scholar
  13. 13.
    Filippi M, Wolinsky JS, Comi G (2006) Effects of oral glatiramer acetate on clinical and MRI-monitored disease activity in patients with relapsing multiple sclerosis: a multicentre, double-blind, randomized, placebo-controlled study. Lancet Neurol 5: 213–220PubMedCrossRefGoogle Scholar
  14. 14.
    Foss FW, Clemens JJ, Davis MD et al. (2005) Synthesis, stability, and implications of phosphothioate agonists of sphingosine-1-phosphate receptors. Bioorg Med Chem Lett 15: 4470–4474PubMedCrossRefGoogle Scholar
  15. 15.
    Friese MA, Fugger L (2005) Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 128: 1747–1763PubMedCrossRefGoogle Scholar
  16. 16.
    Fujino M, Funeshima N, Kitazawa Y et al. (2003) Amelioration of EAE in Lewis rats by FTY720 treatment. J Pharmacol Exp Ther 305: 70–77PubMedCrossRefGoogle Scholar
  17. 17.
    Fujita T, Inoue K, Yamamoto S et al. (1994) Fungal metabolites. Part II. A potent immunosuppressive activity found in Isaria Sinclairii metabolite. Jpn J Antibiot 47: 208–215Google Scholar
  18. 18.
    Gräler MH, Goetzl EJ (2004) The immunosuppressant FTY720 down-regulates sphingosine-1-phosphate G-protein coupled receptors. FASEB J 18: 551–553PubMedGoogle Scholar
  19. 19.
    Halin C, Scimone ML, Bonasio R et al. (2005) The S1P-analog FTY720 differentially modulates T-cell homing via HEV: T-cell-expressed S1P1 amplifies integrin activation in peripheral lymph nodes but not in Peyer patches. Blood 106: 1314–1322PubMedCrossRefGoogle Scholar
  20. 20.
    Harada J, Foley M, Moskowitz MA et al. (2004) S1P induces proliferation and morphological changes of progenitor cells. J Neurochem 88: 1026–1039PubMedCrossRefGoogle Scholar
  21. 21.
    Hashimoto D, Asakura S, Matsuoka KI et al. (2007) FTY720 enhances the activiation-induced apoptosis of donor T cells and modulates graft-versus-host-disease. Eur J Immunol 37: 271–281PubMedCrossRefGoogle Scholar
  22. 22.
    Hemmer B, Nessler S, Zhou D et al. (2006) Immunopathogenesis and immunotherapy of multiple sclerosis. Nat Clin Pract Neurol 2: 201–211PubMedCrossRefGoogle Scholar
  23. 23.
    Hoffmann M, Brinkmann V, Zerwes HG (2006) FTY720 preferentially depletes naïve T cells from peripheral and lymphoid organs. Int Immunopharmacol 6: 1902–1910CrossRefGoogle Scholar
  24. 24.
    Hozumi Y, Kobayashi E, Miyata M et al. (1999) Immunotherapy for experimental rat autoimmune thyroiditis using a novel immunosuppressant, FTY720. Life Sci 65: 1739–1745PubMedCrossRefGoogle Scholar
  25. 25.
    Jaillard C, Harrison C, Stankoff B et al. (2005) S1P5: An oligodendroglial receptor with dual function on process retraction and cell survival. J Neurosci 25: 1459–1469PubMedCrossRefGoogle Scholar
  26. 26.
    Kahan BD, Karlix JL, Ferguson RM et al. (2003) Pharmacodynamics, pharmacokinetics and safety of multiple doses of FTY720 in stable renal transplant patients: a multicenter, randomized, placebo-controlled phase I study. Transplantation 76: 1079–1084PubMedCrossRefGoogle Scholar
  27. 27.
    Kappos L, Antel J, Comi G et al. (2006) Oral Fingolimod for relapsing multiple sclerosis. New Engl J Med 355: 1124–1140PubMedCrossRefGoogle Scholar
  28. 28.
    Kappos L, Antel J, Comi G et al. (2006) Oral Fingolimod (FTY720) in relapsing MS: 24 month results of the phase II study. Poster presented at 22nd meeting of the ECTRIMS, Madrid, Spain, 27–30 September 2006Google Scholar
  29. 29.
    Kataoka H, Sugahara K, Shimano K et al. (2005) FTY720, sphingosine-1-phosphate receptor modulator, ameliorates EAE in rats and mice. Cell Mol Immunol 2: 438–448Google Scholar
  30. 30.
    Kohno T, Tsuji T, Hirayama K et al. (2004) A novel immunomodulator, FTY720, prevents spontaneous dermatitis in NC/Nga mice. Biol Pharm Bull 27: 1392–1396PubMedCrossRefGoogle Scholar
  31. 31.
    Kohno T, Tsuji T, Hirayama K et al. (2005) A Novel Immunomodulator, FTY720, prevents development of experimental autoimmune Myasthenia Gravis in C57BL/6 mice. Biol Pharm Bull 28: 736–739PubMedCrossRefGoogle Scholar
  32. 32.
    Koyrakh L, Roman MI, Brinkmann V et al. (2005) The heart rate decrease caused by acute FTY720 administration is mediated by the G-protein-gated potassium channel IKAch. Am J Transplant 5: 529–536PubMedCrossRefGoogle Scholar
  33. 33.
    Kurose S, Ikeda E, Tokiwa M et al. (2000) Effects of FTY720, a novel immunosuppressant, on experimental autoimmune uveoretinitis in rats. Exp Eye Res 70: 7–15PubMedCrossRefGoogle Scholar
  34. 34.
    Maki T, Gottschalk R, Monaco AP (2002) Prevention of autoimmune diabetes by FTY720 in nonobese diabetic mice. Transplantation 74: 1684–1686PubMedCrossRefGoogle Scholar
  35. 35.
    Maki T, Gottschalk R, Ogawa N et al. (2005) Prevention and cure of autoimmune diabetes in nonobese diabetic mice by continuous administration of FTY720. Transplantation 79: 1051–1055PubMedCrossRefGoogle Scholar
  36. 36.
    Mandala S, Hajdu R, Bergstrom J et al. (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296: 346–349PubMedCrossRefGoogle Scholar
  37. 37.
    Masopust D, Vezys V, Marzo AL et al. (2001) Preferential localization of effector memory cells in non-lymphoid tissue. Science 291: 2413–2147PubMedCrossRefGoogle Scholar
  38. 38.
    Matloubian M, Lo CG, Cinamon G et al. (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427: 355–360PubMedCrossRefGoogle Scholar
  39. 39.
    Matsuura M, Imayoshi T, Okumoto T (2000) Effect of FTY720, a novel immunosuppressant, on adjuvant- and collagen-induced arthritis in rats. Int J Immunopharmacol 2: 323–331CrossRefGoogle Scholar
  40. 40.
    Miyamoto T, Matsumori A, Hwang MW et al. (2001) Therapeutic effects of FTY720, a new immunosuppressive agent, in a murine model of acute viral myocarditis. J Am Coll Cardiol 37: 1713–1718PubMedCrossRefGoogle Scholar
  41. 41.
    Mizushima T, Ito T, Kishi D et al. (2004) Theapeutic effects of a new lymphocyte homing reagent FTY720 in interleukin-10 gene-deficient mice with colitis. Inflamm Bowel Dis 10: 182–192PubMedCrossRefGoogle Scholar
  42. 42.
    Mizugishi K, Yamashita T, Olivera A et al. (2005) Essential role for sphingosine kinases in neural and vascular development. Mol Cell Biol 25: 11113–11121PubMedCrossRefGoogle Scholar
  43. 43.
    Mulgaonkar S, Tedesco-Silva H, Oppenheimer F et al. (2006) FTY720/Cyclosporine regimens in de novo renal transplantation: A 1-year dose finding study. Am J Transplant 6: 1848–1857PubMedCrossRefGoogle Scholar
  44. 44.
    Nagahara Y, Enosawa S, Ikekita M et al. (2000) Evidence that FTY720 induces T cell apoptosis in vivo. Immunopharmacol 48: 75–85CrossRefGoogle Scholar
  45. 45.
    Noseworthy JH, Hartung HP (2006) Multiple sclerosis and related conditions. In: Noseworthy JH (ed) Neurological Therapeutics: Principles and Practice. 2nd edn. Informa Healthcare, Oxford, pp 1224–1253Google Scholar
  46. 46.
    Okazaki H, Hirata D, Kamimura T et al. (2002) Effect of FTY720 in MRL-lpr/lpr mice: therapeutic potential in systemic lupus erythematosus. J Rheumatol 29: 707–716PubMedGoogle Scholar
  47. 47.
    Paugh SW, Cassidy MP, He H et al. (2006) Sphingosine and its analog, the immunosuppressant 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol, interact with the CB1 receptor. Mol Pharmacol 70: 41–50PubMedGoogle Scholar
  48. 48.
    Pinschewer DD, Ochsenbein AF, Odermatt B et al. (2000) FTY720 immunosuppression impairs effector T cell peripheral homing without affecting induction, expansion and memory. J Immunol 164: 5761–5770PubMedGoogle Scholar
  49. 49.
    Polman C, Barkhof F, Kappos L et al. (2003) Oral interferon beta-1a in relapsing-remitting multiple sclerosis: a double-blind randomized study. Mult Scler 9: 342–348PubMedCrossRefGoogle Scholar
  50. 50.
    Popovic J, Kover KL, Moore WV (2004) The effect of immunomodulators on prevention of autoimmune diabetes is stage dependent: FTY720 prevents diabetes at three different stages in the diabetes-resistant biobreeding rat. Pediatr Diabetes 5: 3–9PubMedCrossRefGoogle Scholar
  51. 51.
    Radue EW, O‘Connor P, Antel J et al. (2006) Oral Fingolimod (FTY720) in relapsing MS: MRI results of a placebo-controlled phase II study and active drug extension. Abstract presented at the 22nd ECTRIMS, Madrid, SpainGoogle Scholar
  52. 52.
    Rausch M, Hiestand P, Foster CA et al. (2004) Predictability of FTY720 efficacy in experimental autoimmune encephalomyelitis by in vivo macrophage tracking: clinical implications for ultrasmall superparamagnetic iron oxide-enhanced magnetic resonance imaging. J Magn Reson Imaging 20: 16–24PubMedCrossRefGoogle Scholar
  53. 53.
    Rausch M, Kindler D, Bolliger S et al. (2005) Demonstration of the efficacy of FTY720 in acute EAE: analysis of lesion load using USPIO- and gadolinium-enhanced MRI and correlation with neurological readouts. Poster presented at 21st meeting of the ECTRIMS, Thessaloniki, Greece, 28 September–1 October 2005Google Scholar
  54. 54.
    Rice GP, Hartung HP, Calabresi PA (2005) Anti-α4 integrin therapy for multiple sclerosis – mechanisms and rationale. Neurology 64: 1336–1342PubMedGoogle Scholar
  55. 55.
    Rosen H, Goetzl EJ (2005) Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat Rev Immunol 5: 560–570PubMedCrossRefGoogle Scholar
  56. 56.
    Saini HS, Coelho RP, Goparaju SK et al. (2005) Novel role of sphingosine kinase 1 as a mediator of neurotrophin action in oligodendrocyte progenitors. J Neurochem 95: 1298–1310PubMedCrossRefGoogle Scholar
  57. 57.
    Sallusto F, Lenig D, Förster R et al. (1999) Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature 401: 708–712PubMedCrossRefGoogle Scholar
  58. 58.
    Salvadori M, Budde K, Charpentier B (2006) FTY720 versus MMF with Cyclosporine in de novo renal transplantation: A 1-year randomized controlled trial in Europe and Australasia. Am J Transplant 6: 2912–2921PubMedCrossRefGoogle Scholar
  59. 59.
    Sanchez T, Estrada-Hernandez T, Paik JH et al. (2003) Phosphorylation and action of the immunomodulator FTY720 inhibits vascular endothelial cell growth factor-induced vascular permeability. J Biol Chem 47: 47281–47290CrossRefGoogle Scholar
  60. 60.
    Sanchez T, Hla T (2004) Structural and functional characteristics of S1P receptors. J Cell Biochem 92: 913–922PubMedCrossRefGoogle Scholar
  61. 61.
    Sawicka E, Zuany-Amorim C, Manlius C et al. (2003) Inhibition of Th1- and Th2-mediated airway inflammation by the sphingosine-1-phosphate receptor agonist FTY720. J Immunol 171: 6206–6214PubMedGoogle Scholar
  62. 62.
    Sawicka E, Dubois G, Jarai G et al. (2005) The sphingosine-1-phosphate receptor agonist FTY720 differentially affects the sequestration of CD4+/CD25+ T-regulatory cells and enhances their functional activity. J Immunol 175: 7973–7980PubMedGoogle Scholar
  63. 63.
    Schluns KS, Lefrancois L (2003) Cytokine control of memory T-cell development and survival. Nat Rev Immunol 3: 269–279PubMedCrossRefGoogle Scholar
  64. 64.
    Schmouder R, Serra D, Wang Y et al. (2006) FTY720: placebo-controlled study of the effect on cardiac rate and rhythm in healthy subjects. J Clin Pharmacol 46: 895–904PubMedCrossRefGoogle Scholar
  65. 65.
    Singer II, Tian M, Wickham LA et al. (2005) Sphingosine-1-phosphate agonists increase macrophage homing, lymphocyte contacts and endothelial junctional complex formation in murine lymph nodes. J Immunol 175: 7151–7161PubMedGoogle Scholar
  66. 66.
    Storch MK, Rausch M, Hiestand P et al. (2005) FTY720 not only prevents EAE onset, as assessed by MRI, but also reverses established neurological deficits and extensive demyelination. Poster presented at 21st meeting of the ECTRIMS, Thessaloniki, Greece, 28 September–1 October 2005Google Scholar
  67. 67.
    Suzuki S, Li XK, Enosawa S (1996) A new immunosuppressant, FTY720, induces bcl-2 associated apoptotic cell death in human lymphocytes. Immunol 89: 518–523CrossRefGoogle Scholar
  68. 68.
    Tedesco-Silva H, Mourad G, Kahan BD et al. (2005) FTY720, a novel immunomodulator: Efficacy and safety results from the first phase 2a study in de novo renal transplantation. Transplantation 79: 1553–1560PubMedCrossRefGoogle Scholar
  69. 69.
    Tedesco-Silva H, Pescovitz MD, Cibrik D et al. (2006) Randomized controlled trial of FTY720 versus MMF in de novo renal transplantation. Transplantation 82: 1689–1697PubMedCrossRefGoogle Scholar
  70. 70.
    Toman RE, Payne SG, Watterson KR et al. (2004) Differential transactivation of sphingosine-1-phosphate receptors modulates NGF-induced neurite extension. J Cell Biol 166: 381–392PubMedCrossRefGoogle Scholar
  71. 71.
    Ulbrich H, Eriksson EE, Lindbom L (2003) Leukocyte and endothelial cell adhesion molecules as targets for therapeutic interventions in inflammatory disease. TIPS 24: 640–647PubMedGoogle Scholar
  72. 72.
    Webb M, Tham CS, Lin FF et al. (2004) Sphingosine-1-phosphate receptor agonists attenuate relapsing-remitting EAE in SJL mice. J Neuroimmunol 153: 108–121PubMedCrossRefGoogle Scholar
  73. 73.
    Yang Z, Chen M, Fialkow LB et al. (2003) The immunomodulator FTY720 prevents autoimmune diabetes in nonobese diabetic mice. Clin Immunol 107: 30–35PubMedCrossRefGoogle Scholar
  74. 74.
    Yopp AC, Ochando JC, Mao M et al. (2005) Sphingosine-1-phosphate receptors regulate chemokine-driven transendothelial migration of lymph node but not splenic T cells. J Immunol 175: 2913–2924PubMedGoogle Scholar
  75. 75.
    Yu N, Lariosa-Willingham KD, Lin FF et al. (2004) Characterization of lysophosphatidic acid and sphingosine-1-phosphate-mediated signal transduction in rat cortical oligodendocytes. Glia 45: 17–27PubMedCrossRefGoogle Scholar
  76. 76.
    Zemann B, Kinzel B, Müller M et al. (2006) Sphingosine kinase type 2 is essential for lymphopenia induced by the immunomodulatory drug FTY720. Blood 107: 1454–1458PubMedCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  1. 1.Novartis Pharma GmbH NürnbergNürnbergDeutschland
  2. 2.Neurologische KlinikHeinrich-Heine-Universität DüsseldorfDüsseldorfDeutschland
  3. 3.Institut für Klinische NeuroimmunologieKlinikum der LMU München, GroßhadernMünchenDeutschland

Personalised recommendations