Der Nervenarzt

, Volume 78, Issue 8, pp 883–911

Multiple-Sklerose-Update zur Pathophysiologie und neuen immuntherapeutischen Ansätzen

  • C. Kleinschnitz
  • S.G. Meuth
  • B.C. Kieseier
  • H. Wiendl
Übersichten

Zusammenfassung

Die Multiple Sklerose (MS) ist eine chronische Erkrankung, die überwiegend junge Erwachsene betrifft und zu bleibender Behinderung führen kann. Obwohl die Ätiologie der MS noch immer unbekannt ist, haben die vergangenen 10 Jahre beträchtliche Erfolge im Verständnis der zugrunde liegenden Pathophysiologie gebracht. Während die MS als Prototyp einer entzündlichen Autoimmunerkrankung des zentralen Nervensystems (ZNS) angesehen wird, unterstreichen jüngste Daten die Wichtigkeit primärer und sekundärer neurodegenerativer Mechanismen. Die Zulassung des ersten monoklonalen Antikörpers in der neurologischen Therapie, Natalizumab (Tysabri®), verdeutlicht die rasante Weiterentwicklung im Feld. Neuere Behandlungsstrategien zielen insbesondere auch darauf ab, axonalen Schaden zu begrenzen (Axon-/Neuroprotektion) und/oder die Remyelinisierung zu fördern. Der Übersichtsartikel referiert neue Erkenntnisse in der Pathophysiologie der MS; im 2. Teil werden die wichtigsten laufenden oder kürzlich abgeschlossenen klinischen Therapiestudien zusammengestellt.

Schlüsselwörter

Multiple Sklerose Immunmodulation Immunsuppression Neuroprotektion Neurodegeneration Therapie 

Update on pathophysiologic and immunotherapeutic approaches for the treatment of multiple sclerosis

Summary

Multiple sclerosis (MS) is a chronic disabling disease with significant implications for patients and society. The individual disease course is difficult to predict due to the heterogeneity of clinical presentation and of radiologic and pathologic findings. Although its etiology still remains unknown, the last decade has brought considerable understanding of the underlying pathophysiology of MS. In addition to its acceptance as a prototypic inflammatory autoimmune disorder, recent data reveal the importance of primary and secondary neurodegenerative mechanisms such as oligodendrocyte death, axonal loss, and ion channel dysfunction. The deepened understanding of its immunopathogenesis and the limited effectiveness of currently approved disease-modifying therapies have led to a tremendous number of trials investigating potential new drugs. Emerging treatments take into account the different immunopathological mechanisms and strategies, to protect against axonal damage and promote remyelination. This review provides a compilation of novel immunotherapeutic strategies and recently uncovered aspects of known immunotherapeutic agents. The pathogenetic rationale of these novel drugs for the treatment of MS and accompanying preclinical and clinical data are highlighted.

Keywords

Immunomodulation Immunosuppression Multiple sclerosis Neuroprotection Neurodegeneration Therapy 

Literatur

  1. 1.
    Aboul-Enein F, Bauer J, Klein M et al. (2004) Selective and antigen-dependent effects of myelin degeneration on central nervous system inflammation. J Neuropathol Exp Neurol 63: 1284–1296PubMedGoogle Scholar
  2. 2.
    Abrams JR, Lebwohl MG, Guzzo CA et al. (1999) CTLA4Ig-mediated blockade of T-cell costimulation in patients with psoriasis vulgaris. J Clin Invest 103: 1243–1252PubMedGoogle Scholar
  3. 3.
    Acha-Orbea H, Mitchell DJ, Timmermann L et al. (1988) Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. Cell 54: 263–273PubMedGoogle Scholar
  4. 4.
    Achiron A, Lavie G, Kishner I et al. (2004) T cell vaccination in multiple sclerosis relapsing-remitting nonresponders patients. Clin Immunol 113: 155–160PubMedGoogle Scholar
  5. 5.
    Agnello D, Bigini P, Villa P et al. (2002) Erythropoietin exerts an anti-inflammatory effect on the CNS in a model of experimental autoimmune encephalomyelitis. Brain Res 952: 128–134PubMedGoogle Scholar
  6. 6.
    Ahrens N, Salama A, Haas J (2001) Mycophenolate-mofetil in the treatment of refractory multiple sclerosis. J Neurol 248: 713–714PubMedGoogle Scholar
  7. 7.
    Alegre ML, Sattar HA, Herold KC et al. (1994) Prevention of the humoral response induced by an anti-CD3 monoclonal antibody by deoxyspergualin in a murine model. Transplantation 57: 1786–1794PubMedGoogle Scholar
  8. 8.
    Aloisi F, Pujol-Borrell R (2006) Lymphoid neogenesis in chronic inflammatory diseases. Nat Rev Immunol 6: 205–217PubMedGoogle Scholar
  9. 9.
    Andersen O, Lycke J, Tollesson PO et al. (1996) Linomide reduces the rate of active lesions in relapsing-remitting multiple sclerosis. Neurology 47: 895–900PubMedGoogle Scholar
  10. 10.
    Antel JP, Bar-Or A (2003) Do myelin-directed antibodies predict multiple sclerosis? N Engl J Med 349: 107–109PubMedGoogle Scholar
  11. 11.
    Archelos JJ, Hartung HP (2000) Pathogenetic role of autoantibodies in neurological diseases. Trends Neurosci 23: 317–327PubMedGoogle Scholar
  12. 12.
    Arroyo AG, Yang JT, Rayburn H, Hynes RO (1996) Differential requirements for alpha4 integrins during fetal and adult hematopoiesis. Cell 85: 997–1008PubMedGoogle Scholar
  13. 13.
    Babbe H, Roers A, Waisman A et al. (2000) Clonal expansions of CD8(+) T cells dominate the T cell infiltrate in active multiple sclerosis lesions as shown by micromanipulation and single cell polymerase chain reaction. J Exp Med 192: 393–404PubMedGoogle Scholar
  14. 14.
    Baecher-Allan C, Hafler DA (2004) Suppressor T cells in human diseases. J Exp Med 200: 273–276PubMedGoogle Scholar
  15. 15.
    Baker D, Pryce G, Croxford JL et al. (2000) Cannabinoids control spasticity and tremor in a multiple sclerosis model. Nature 404: 84–87PubMedGoogle Scholar
  16. 16.
    Bar-Or A, Antel J, Bodner CA (2006) Antigen-specific immunomodulation in multiple sclerosis patients treated with MBP encoding DNA plasmid (BHT-3009) alone or combined with atorvastatin. Neurology [Suppl 66]: A62–A62Google Scholar
  17. 17.
    Barnett MH, Prineas JW (2004) Relapsing and remitting multiple sclerosis: pathology of the newly forming lesion. Ann Neurol 55: 458–468PubMedGoogle Scholar
  18. 18.
    Bechtold DA, Kapoor R, Smith KJ (2004) Axonal protection using flecainide in experimental autoimmune encephalomyelitis. Ann Neurol 55: 607–616PubMedGoogle Scholar
  19. 19.
    Beeton C, Wulff H, Barbaria J et al. (2001) Selective blockade of T lymphocyte K(+) channels ameliorates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Proc Natl Acad Sci U S A 98: 13942–13947PubMedGoogle Scholar
  20. 20.
    Ben-Nun A, Cohen IR (1981) Vaccination against autoimmune encephalomyelitis (EAE): attenuated autoimmune T lymphocytes confer resistance to induction of active EAE but not to EAE mediated by the intact T lymphocyte line. Eur J Immunol 11: 949–952PubMedGoogle Scholar
  21. 21.
    Benoist C, Mathis D (2001) Autoimmunity provoked by infection: how good is the case for T cell epitope mimicry? Nat Immunol 2: 797–801PubMedGoogle Scholar
  22. 22.
    Berger T, Rubner P, Schautzer F et al. (2003) Antimyelin antibodies as a predictor of clinically definite multiple sclerosis after a first demyelinating event. N Engl J Med 349: 139–145PubMedGoogle Scholar
  23. 23.
    Bielekova B, Catalfamo M, Reichert-Scrivner S et al. (2006) Regulatory CD56(bright) natural killer cells mediate immunomodulatory effects of IL-2Ralpha-targeted therapy (daclizumab) in multiple sclerosis. Proc Natl Acad Sci U S A 103: 5941–5946PubMedGoogle Scholar
  24. 24.
    Bielekova B, Goodwin B, Richert N et al. (2000) Encephalitogenic potential of the myelin basic protein peptide (amino acids 83–99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med 6: 1167–1175PubMedGoogle Scholar
  25. 25.
    Bielekova B, Lincoln A, McFarland H, Martin R (2000) Therapeutic potential of phosphodiesterase-4 and −3 inhibitors in Th1-mediated autoimmune diseases. J Immunol 164: 1117–1124PubMedGoogle Scholar
  26. 26.
    Bielekova B, Richert N, Howard T et al. (2004) Humanized anti-CD25 (daclizumab) inhibits disease activity in multiple sclerosis patients failing to respond to interferon beta. Proc Natl Acad Sci U S A 101: 8705–8708PubMedGoogle Scholar
  27. 27.
    Bisikirska B, Colgan J, Luban J et al. (2005) TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J Clin Invest 115: 2904–2913PubMedGoogle Scholar
  28. 28.
    Bjartmar C, Trapp BD (2001) Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14: 271–278PubMedGoogle Scholar
  29. 29.
    Black JA, Dib-Hajj S, Baker D et al. (2000) Sensory neuron-specific sodium channel SNS is abnormally expressed in the brains of mice with experimental allergic encephalomyelitis and humans with multiple sclerosis. Proc Natl Acad Sci U S A 97: 11598–11602PubMedGoogle Scholar
  30. 30.
    Blanco Y, Saiz A, Carreras E, Graus F (2005) Autologous haematopoietic-stem-cell transplantation for multiple sclerosis. Lancet Neurol 4: 54–63PubMedGoogle Scholar
  31. 31.
    Bolton C, Paul C (1997) MK-801 limits neurovascular dysfunction during experimental allergic encephalomyelitis. J Pharmacol Exp Ther 282: 397–402PubMedGoogle Scholar
  32. 32.
    Boneberg EM, Hartung T (2002) Granulocyte colony-stimulating factor attenuates LPS-stimulated IL-1beta release via suppressed processing of proIL-1beta, whereas TNF-alpha release is inhibited on the level of proTNF-alpha formation. Eur J Immunol 32: 1717–1725PubMedGoogle Scholar
  33. 33.
    Bothwell M (1995) Functional interactions of neurotrophins and neurotrophin receptors. Annu Rev Neurosci 18: 223–253PubMedGoogle Scholar
  34. 34.
    Bourdette DN, Whitham RH, Chou YK et al. (1994) Immunity to TCR peptides in multiple sclerosis. I. Successful immunization of patients with synthetic V beta 5.2 and V beta 6.1 CDR2 peptides. J Immunol 152: 2510–2519PubMedGoogle Scholar
  35. 35.
    Bowen JD, Petersdorf SH, Richards TL et al. (1998) Phase I-Study of a humanized anti-CD11/CD18 monoclonal antibody in multiple sclerosis. Clin Pharmacol Ther 64: 339–346PubMedGoogle Scholar
  36. 36.
    Brand-Schieber E, Werner P (2004) Calcium channel blockers ameliorate disease in a mouse model of multiple sclerosis. Exp Neurol 189: 5–9PubMedGoogle Scholar
  37. 37.
    Brinkmann V, Davis MD, Heise CE et al. (2002) The immune modulator FTY720 targets sphingosine 1-phosphate receptors. J Biol Chem 277: 21453–21457PubMedGoogle Scholar
  38. 38.
    Brok HP, Meurs M van, Blezer E et al. (2002) Prevention of experimental autoimmune encephalomyelitis in common marmosets using an anti-IL-12p40 monoclonal antibody. J Immunol 169: 6554–6563PubMedGoogle Scholar
  39. 39.
    Brundula V, Rewcastle NB, Metz LM et al. (2002) Targeting leukocyte MMPs and transmigration: minocycline as a potential therapy for multiple sclerosis. Brain 125: 1297–1308PubMedGoogle Scholar
  40. 40.
    Brunmark C, Runstrom A, Ohlsson L et al. (2002) The new orally active immunoregulator laquinimod (ABR-215062) effectively inhibits development and relapses of experimental autoimmune encephalomyelitis. J Neuroimmunol 130: 163–172PubMedGoogle Scholar
  41. 41.
    Budde K, Schmouder RL, Brunkhorst R et al. (2002) First human trial of FTY720, a novel immunomodulator, in stable renal transplant patients. J Am Soc Nephrol 13: 1073–1083PubMedGoogle Scholar
  42. 42.
    Carreno BM, Collins M (2002) The B7 family of ligands and its receptors: new pathways for costimulation and inhibition of immune responses. Annu Rev Immunol 20: 29–53PubMedGoogle Scholar
  43. 43.
    Cepok S, Zhou D, Srivastava R et al. (2005) Identification of Epstein-Barr virus proteins as putative targets of the immune response in multiple sclerosis. J Clin Invest 115: 1352–1360PubMedGoogle Scholar
  44. 44.
    Chang A, Tourtellotte WW, Rudick R, Trapp BD (2002) Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med 346: 165–173PubMedGoogle Scholar
  45. 45.
    Charo IF, Ransohoff RM (2006) The many roles of chemokines and chemokine receptors in inflammation. N Engl J Med 354: 610–621PubMedGoogle Scholar
  46. 46.
    Chen BJ, Morris RE, Chao NJ (2000) Graft-versus-host disease prevention by rapamycin: cellular mechanisms. Biol Blood Marrow Transplant 6: 529–536PubMedGoogle Scholar
  47. 47.
    Chitnis T, Imitola J, Khoury SJ (2005) Therapeutic strategies to prevent neurodegeneration and promote regeneration in multiple sclerosis. Curr Drug Targets Immune Endocr Metabol Disord 5: 11–26PubMedGoogle Scholar
  48. 48.
    Chunduru SK, Sutherland RM, Stewart GA et al. (1996) Exploitation of the Vbeta8.2 T cell receptor in protection against experimental autoimmune encephalomyelitis using a live vaccinia virus vector. J Immunol 156: 4940–4945PubMedGoogle Scholar
  49. 49.
    Ciric B, Howe CL, Paz Soldan M et al. (2003) Human monoclonal IgM antibody promotes CNS myelin repair independent of Fc function. Brain Pathol 13: 608–616PubMedCrossRefGoogle Scholar
  50. 50.
    Clements JM, Cossins JA, Wells GM et al. (1997) Matrix metalloproteinase expression during experimental autoimmune encephalomyelitis and effects of a combined matrix metalloproteinase and tumour necrosis factor-alpha inhibitor. J Neuroimmunol 74: 85–94PubMedGoogle Scholar
  51. 51.
    Cohen J (1995) IL-12 deaths: explanation and a puzzle. Science 270: 908PubMedGoogle Scholar
  52. 52.
    Coles AJ, Wing MG, Molyneux P et al. (1999) Monoclonal antibody treatment exposes three mechanisms underlying the clinical course of multiple sclerosis. Ann Neurol 46: 296–304PubMedGoogle Scholar
  53. 53.
    Columba-Cabezas S, Serafini B, Ambrosini E et al. (2002) Induction of macrophage-derived chemokine/CCL22 expression in experimental autoimmune encephalomyelitis and cultured microglia: implications for disease regulation. J Neuroimmunol 130: 10–21PubMedGoogle Scholar
  54. 54.
    Craner MJ, Damarjian TG, Liu S et al. (2005) Sodium channels contribute to microglia/macrophage activation and function in EAE and MS. Glia 49: 220–229PubMedGoogle Scholar
  55. 55.
    Craner MJ, Lo AC, Black JA, Waxman SG (2003) Abnormal sodium channel distribution in optic nerve axons in a model of inflammatory demyelination. Brain 126: 1552–1561PubMedGoogle Scholar
  56. 56.
    Cyster JG (2005) Chemokines, sphingosine-1-phosphate, and cell migration in secondary lymphoid organs. Annu Rev Immunol 23: 127–159PubMedGoogle Scholar
  57. 57.
    Dello Russo C, Gavrilyuk V, Weinberg G et al. (2003) Peroxisome proliferator-activated receptor gamma thiazolidinedione agonists increase glucose metabolism in astrocytes. J Biol Chem 278: 5828–5836Google Scholar
  58. 58.
    Delorenze GN, Munger KL, Lennette ET et al. (2006) Epstein-Barr Virus and Multiple Sclerosis: Evidence of Association From a Prospective Study With Long-term Follow-up. Arch Neurol 63: 839–844PubMedGoogle Scholar
  59. 59.
    Diab A, Deng C, Smith JD et al. (2002) Peroxisome proliferator-activated receptor-gamma agonist 15-deoxy-Delta(12,14)-prostaglandin J(2) ameliorates experimental autoimmune encephalomyelitis. J Immunol 168: 2508–2515PubMedGoogle Scholar
  60. 60.
    Dinarello CA, Thompson RC (1991) Blocking IL-1: interleukin 1 receptor antagonist in vivo and in vitro. Immunol Today 12: 404–410PubMedGoogle Scholar
  61. 61.
    Dyke HJ, Montana JG (2002) Update on the therapeutic potential of PDE4 inhibitors. Expert Opin Investig Drugs 11: 1–13PubMedGoogle Scholar
  62. 62.
    Ehrenreich H, Aust C, Krampe H et al. (2004) Erythropoietin: novel approaches to neuroprotection in human brain disease. Metab Brain Dis 19: 195–206PubMedGoogle Scholar
  63. 63.
    Elices MJ (2002) BX-471 Berlex. Curr Opin Investig Drugs 3: 865–869PubMedGoogle Scholar
  64. 64.
    Engelhardt B, Briskin MJ (2005) Therapeutic targeting of alpha 4-integrins in chronic inflammatory diseases: tipping the scales of risk towards benefit? Eur J Immunol 35: 2268–2273PubMedGoogle Scholar
  65. 65.
    Engelhardt B, Ransohoff RM (2005) The ins and outs of T-lymphocyte trafficking to the CNS: anatomical sites and molecular mechanisms. Trends Immunol 26: 485–495PubMedGoogle Scholar
  66. 66.
    Farrell R, Heaney D, Giovannoni G (2005) Emerging therapies in multiple sclerosis. Expert Opin Emerg Drugs 10: 797–816PubMedGoogle Scholar
  67. 67.
    Fassas A, Passweg JR, Anagnostopoulos A et al. (2002) Hematopoietic stem cell transplantation for multiple sclerosis. A retrospective multicenter study. J Neurol 249: 1088–1097PubMedGoogle Scholar
  68. 68.
    Ferrante P, Fusi ML, Saresella M et al. (1998) Cytokine production and surface marker expression in acute and stable multiple sclerosis: altered IL-12 production and augmented signaling lymphocytic activation molecule (SLAM)-expressing lymphocytes in acute multiple sclerosis. J Immunol 160: 1514–1521PubMedGoogle Scholar
  69. 69.
    Filippi M (2002) The role of magnetic resonance imaging in the assessment of patients with established multiple sclerosis. Neurol Sci 23: 89–90PubMedGoogle Scholar
  70. 70.
    Filippi M, Rovaris M, Rice GP et al. (2000) The effect of cladribine on T(1) ‚black hole‘ changes in progressive MS. J Neurol Sci 176: 42–44PubMedGoogle Scholar
  71. 71.
    Fontoura P, Garren H, Steinman L (2005) Antigen-specific therapies in multiple sclerosis: going beyond proteins and peptides. Int Rev Immunol 24: 415–446PubMedGoogle Scholar
  72. 72.
    Fox RJ, Ransohoff RM (2004) New directions in MS therapeutics: vehicles of hope. Trends Immunol 25: 632–636PubMedGoogle Scholar
  73. 73.
    Frauwirth KA, Thompson CB (2002) Activation and inhibition of lymphocytes by costimulation. J Clin Invest 109: 295–299PubMedGoogle Scholar
  74. 74.
    Friese MA, Montalban X, Willcox N et al. (2006) The value of animal models for drug development in multiple sclerosis. Brain 129: 1940–1952PubMedGoogle Scholar
  75. 75.
    Frohman EM, Brannon K, Racke MK, Hawker K (2004) Mycophenolate mofetil in multiple sclerosis. Clin Neuropharmacol 27: 80–83PubMedGoogle Scholar
  76. 76.
    Frohman EM, Racke MK, Raine CS (2006) Multiple sclerosis--the plaque and its pathogenesis. N Engl J Med 354: 942–955PubMedGoogle Scholar
  77. 77.
    Fujimoto T, Sakoda S, Fujimura H, Yanagihara T (1999) Ibudilast, a phosphodiesterase inhibitor, ameliorates experimental autoimmune encephalomyelitis in Dark August rats. J Neuroimmunol 95: 35–42PubMedGoogle Scholar
  78. 78.
    Fujino M, Funeshima N, Kitazawa Y et al. (2003) Amelioration of experimental autoimmune encephalomyelitis in Lewis rats by FTY720 treatment. J Pharmacol Exp Ther 305: 70–77PubMedGoogle Scholar
  79. 79.
    Gately MK, Renzetti LM, Magram J et al. (1998) The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol 16: 495–521PubMedGoogle Scholar
  80. 80.
    Genc K, Genc S, Baskin H, Semin I (2006) Erythropoietin decreases cytotoxicity and nitric oxide formation induced by inflammatory stimuli in rat oligodendrocytes. Physiol Res 55: 33–38PubMedGoogle Scholar
  81. 81.
    Genc S, Koroglu TF, Genc K (2004) Erythropoietin as a novel neuroprotectant. Restor Neurol Neurosci 22: 105–119PubMedGoogle Scholar
  82. 82.
    Germain RN, Stefanova I (1999) The dynamics of T cell receptor signaling: complex orchestration and the key roles of tempo and cooperation. Annu Rev Immunol 17: 467–522PubMedGoogle Scholar
  83. 83.
    Giuliani F, Fu SA, Metz LM, Yong VW (2005) Effective combination of minocycline and interferon-beta in a model of multiple sclerosis. J Neuroimmunol 165: 83–91PubMedGoogle Scholar
  84. 84.
    Gold R, Havrdova E, Kappos L et al. (2006) Safety of a novel oral single-agent fumarate, BG00012, in patients with relapsing-remitting mutiple sclerosis: results of a phase 2 study. J Neurol 253: 144Google Scholar
  85. 85.
    Gonsette RE, Dubois B (2004) Pixantrone (BBR2778): a new immunosuppressant in multiple sclerosis with a low cardiotoxicity. J Neurol Sci 223: 81–86PubMedGoogle Scholar
  86. 86.
    Goodkin DE, Shulman M, Winkelhake J et al. (2000) A phase I trial of solubilized DR2: MBP84–102 (AG284) in multiple sclerosis. Neurology 54: 1414–1420PubMedGoogle Scholar
  87. 87.
    Gordon EJ, Myers KJ, Dougherty JP et al. (1995) Both anti-CD11a (LFA-1) and anti-CD11b (MAC-1) therapy delay the onset and diminish the severity of experimental autoimmune encephalomyelitis. J Neuroimmunol 62: 153–160PubMedGoogle Scholar
  88. 88.
    Greter M, Heppner FL, Lemos MP et al. (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11: 328–334PubMedGoogle Scholar
  89. 89.
    Hickey WF, Kimura H (1988) Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science 239: 290–292PubMedGoogle Scholar
  90. 90.
    Hohlfeld R, Wekerle H (2004) Autoimmune concepts of multiple sclerosis as a basis for selective immunotherapy: from pipe dreams to (therapeutic) pipelines. Proc Natl Acad Sci U S A [Suppl 2] 101: 14599–14606Google Scholar
  91. 91.
    Hohlfeld R, Wiendl H (2001) The ups and downs of multiple sclerosis therapeutics. Ann Neurol 49: 281–284PubMedGoogle Scholar
  92. 92.
    Howard LM, Kohm AP, Castaneda CL, Miller SD (2005) Therapeutic blockade of TCR signal transduction and co-stimulation in autoimmune disease. Curr Drug Targets Inflamm Allergy 4: 205–216PubMedGoogle Scholar
  93. 93.
    Howell MD, Winters ST, Olee T et al. (1989) Vaccination against experimental allergic encephalomyelitis with T cell receptor peptides. Science 246: 668–670PubMedGoogle Scholar
  94. 94.
    Huitinga I, Ruuls SR, Jung S et al. (1995) Macrophages in T cell line-mediated, demyelinating, and chronic relapsing experimental autoimmune encephalomyelitis in Lewis rats. Clin Exp Immunol 100: 344–351PubMedCrossRefGoogle Scholar
  95. 95.
    Jiang H, Kashleva H, Xu LX et al. (1998) T cell vaccination induces T cell receptor Vbeta-specific Qa-1-restricted regulatory CD8(+) T cells. Proc Natl Acad Sci U S A 95: 4533–4537PubMedGoogle Scholar
  96. 96.
    Jonsson S, Andersson G, Fex T et al. (2004) Synthesis and biological evaluation of new 1,2-dihydro-4-hydroxy-2-oxo-3-quinolinecarboxamides for treatment of autoimmune disorders: structure-activity relationship. J Med Chem 47: 2075–2088PubMedGoogle Scholar
  97. 97.
    Kalkers NF, Barkhof F, Bergers E et al. (2002) The effect of the neuroprotective agent riluzole on MRI parameters in primary progressive multiple sclerosis: a pilot study. Mult Scler 8: 532–533PubMedGoogle Scholar
  98. 98.
    Kappos L, Antel J, Comi G et al. (2006) Oral fingolimod (FTY720) for relapsing multiple sclerosis. N Engl J Med 355: 1124–1140PubMedGoogle Scholar
  99. 99.
    Kappos L, Barkhof F, Desmet A (2005) The effect of oral temsirolimus on new magnetic resonance imaging scan lesions, brain atrophy, and the number of relapses in multiple sclerosis: results from a randomised, controlled clinical trial. J Neurol [Suppl 42] 252: 46–46Google Scholar
  100. 100.
    Kappos L, Comi G, Panitch H et al. (2000) Induction of a non-encephalitogenic type 2 T helper-cell autoimmune response in multiple sclerosis after administration of an altered peptide ligand in a placebo-controlled, randomized phase II trial. The Altered Peptide Ligand in Relapsing MS Study Group. Nat Med 6: 1176–1182PubMedGoogle Scholar
  101. 101.
    Kappos L, Miller DH, MacManus DG et al. (2006) Efficacy of a novel oral single-agent fumarate, BG00012, in patients with relapsing-remitting multiple sclerosis: results of a phase 2 study. J Neurol 253: 27Google Scholar
  102. 102.
    Kawai T, Andrews D, Colvin RB et al. (2000) Thromboembolic complications after treatment with monoclonal antibody against CD40 ligand. Nat Med 6: 114Google Scholar
  103. 103.
    Keegan M, Konig F, McClelland R et al. (2005) Relation between humoral pathological changes in multiple sclerosis and response to therapeutic plasma exchange. Lancet 366: 579–582PubMedGoogle Scholar
  104. 104.
    Keeley KA, Rivey MP, Allington DR (2005) Natalizumab for the treatment of multiple sclerosis and Crohn’s disease. Ann Pharmacother 39: 1833–1843PubMedGoogle Scholar
  105. 105.
    Kerschensteiner M, Stadelmann C, Dechant G et al. (2003) Neurotrophic cross-talk between the nervous and immune systems: implications for neurological diseases. Ann Neurol 53: 292–304PubMedGoogle Scholar
  106. 106.
    Killestein J, Olsson T, Wallstrom E et al. (2002) Antibody-mediated suppression of Vbeta5.2/5.3(+) T cells in multiple sclerosis: results from an MRI-monitored phase II clinical trial. Ann Neurol 51: 467–474PubMedGoogle Scholar
  107. 107.
    Kleinschmidt-DeMasters BK, Tyler KL (2005) Progressive multifocal leukoencephalopathy complicating treatment with natalizumab and interferon beta-1a for multiple sclerosis. N Engl J Med 353: 369–374PubMedGoogle Scholar
  108. 108.
    Kleinschnitz C, Schroeter M, Jander S, Stoll G (2004) Induction of granulocyte colony-stimulating factor mRNA by focal cerebral ischemia and cortical spreading depression. Brain Res Mol Brain Res 131: 73–78PubMedGoogle Scholar
  109. 109.
    Klotz L, Schmidt M, Giese T et al. (2005) Proinflammatory stimulation and pioglitazone treatment regulate peroxisome proliferator-activated receptor gamma levels in peripheral blood mononuclear cells from healthy controls and multiple sclerosis patients. J Immunol 175: 4948–4955PubMedGoogle Scholar
  110. 110.
    Kobata T, Azuma M, Yagita H, Okumura K (2000) Role of costimulatory molecules in autoimmunity. Rev Immunogenet 2: 74–80PubMedGoogle Scholar
  111. 111.
    Kohm AP, Williams JS, Bickford AL et al. (2005) Treatment with nonmitogenic anti-CD3 monoclonal antibody induces CD4+ T cell unresponsiveness and functional reversal of established experimental autoimmune encephalomyelitis. J Immunol 174: 4525–4534PubMedGoogle Scholar
  112. 112.
    Konno H, Yamamoto T, Iwasaki Y et al. (1989) Ia-expressing microglial cells in experimental allergic encephalomyelitis in rats. Acta Neuropathol (Berl) 77: 472–479Google Scholar
  113. 113.
    Korn T, Magnus T, Toyka K, Jung S (2004) Modulation of effector cell functions in experimental autoimmune encephalomyelitis by leflunomide--mechanisms independent of pyrimidine depletion. J Leukoc Biol 76: 950–960PubMedGoogle Scholar
  114. 114.
    Kornek B, Storch MK, Bauer J et al. (2001) Distribution of a calcium channel subunit in dystrophic axons in multiple sclerosis and experimental autoimmune encephalomyelitis. Brain 124: 1114–1124PubMedGoogle Scholar
  115. 115.
    Krumbholz M, Theil D, Derfuss T et al. (2005) BAFF is produced by astrocytes and up-regulated in multiple sclerosis lesions and primary central nervous system lymphoma. J Exp Med 201: 195–200PubMedGoogle Scholar
  116. 116.
    Kwak B, Mulhaupt F, Myit S, Mach F (2000) Statins as a newly recognized type of immunomodulator. Nat Med 6: 1399–1402PubMedGoogle Scholar
  117. 117.
    Lassmann H, Bruck W, Lucchinetti C (2001) Heterogeneity of multiple sclerosis pathogenesis: implications for diagnosis and therapy. Trends Mol Med 7: 115–121PubMedGoogle Scholar
  118. 118.
    Lebwohl M, Tyring SK, Hamilton TK et al. (2003) A novel targeted T-cell modulator, efalizumab, for plaque psoriasis. N Engl J Med 349: 2004–2013PubMedGoogle Scholar
  119. 119.
    Lennon VA, Kryzer TJ, Pittock SJ et al. (2005) IgG marker of optic-spinal multiple sclerosis binds to the aquaporin-4 water channel. J Exp Med 202: 473–477PubMedGoogle Scholar
  120. 120.
    Li W, Maeda Y, Yuan RR et al. (2004) Beneficial effect of erythropoietin on experimental allergic encephalomyelitis. Ann Neurol 56: 767–777PubMedGoogle Scholar
  121. 121.
    Lim ET, Berger T, Reindl M et al. (2005) Anti-myelin antibodies do not allow earlier diagnosis of multiple sclerosis. Mult Scler 11: 492–494PubMedGoogle Scholar
  122. 122.
    Lindsey JW, Hodgkinson S, Mehta R et al. (1994) Repeated treatment with chimeric anti-CD4 antibody in multiple sclerosis. Ann Neurol 36: 183–189PubMedGoogle Scholar
  123. 123.
    Linsley PS, Brady W, Urnes M et al. (1991) CTLA-4 is a second receptor for the B cell activation antigen B7. J Exp Med 174: 561–569PubMedGoogle Scholar
  124. 124.
    Lo AC, Saab CY, Black JA, Waxman SG (2003) Phenytoin protects spinal cord axons and preserves axonal conduction and neurological function in a model of neuroinflammation in vivo. J Neurophysiol 90: 3566–3571PubMedGoogle Scholar
  125. 125.
    Lovett-Racke AE, Bittner P, Cross AH et al. (1998) Regulation of experimental autoimmune encephalomyelitis with insulin-like growth factor (IGF-1) and IGF-1/IGF-binding protein-3 complex (IGF-1/IGFBP3). J Clin Invest 101: 1797–1804PubMedGoogle Scholar
  126. 126.
    Lublin F (1999) A phase II trial of anti-CD11/CD18 monoclonal antibody in acute exacerbations of MS. Neurology 52 [Suppl 2]Google Scholar
  127. 127.
    Lucchinetti C, Bruck W, Parisi J et al. (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47: 707–717PubMedGoogle Scholar
  128. 128.
    Maeda A, Sobel RA (1996) Matrix metalloproteinases in the normal human central nervous system, microglial nodules, and multiple sclerosis lesions. J Neuropathol Exp Neurol 55: 300–309PubMedGoogle Scholar
  129. 129.
    Magliozzi R, Columba-Cabezas S, Serafini B, Aloisi F (2004) Intracerebral expression of CXCL13 and BAFF is accompanied by formation of lymphoid follicle-like structures in the meninges of mice with relapsing experimental autoimmune encephalomyelitis. J Neuroimmunol 148: 11–23PubMedGoogle Scholar
  130. 130.
    Magnus T, Schreiner B, Korn T et al. (2005) Microglial expression of the B7 family member B7 homolog 1 confers strong immune inhibition: implications for immune responses and autoimmunity in the CNS. J Neurosci 25: 2537–2546PubMedGoogle Scholar
  131. 131.
    Mancardi GL, Saccardi R, Filippi M et al. (2001) Autologous hematopoietic stem cell transplantation suppresses Gd-enhanced MRI activity in MS. Neurology 57: 62–68PubMedGoogle Scholar
  132. 132.
    Mandala S, Hajdu R, Bergstrom J et al. (2002) Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296: 346–349PubMedGoogle Scholar
  133. 133.
    Marecki S, Kirkpatrick P (2004) Efalizumab. Nat Rev Drug Discov 3: 473–474PubMedGoogle Scholar
  134. 134.
    Marracci GH, McKeon GP, Marquardt WE et al. (2004) Alpha lipoic acid inhibits human T-cell migration: implications for multiple sclerosis. J Neurosci Res 78: 362–370PubMedGoogle Scholar
  135. 135.
    Matloubian M, Lo CG, Cinamon G et al. (2004) Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427: 355–360PubMedGoogle Scholar
  136. 136.
    McDonald WI, Compston A, Edan G et al. (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50: 121–127PubMedGoogle Scholar
  137. 137.
    Meden H, Mielke S, Marx D et al. (1997) Hormonal treatment with sex steroids in women is associated with lower p105 serum concentrations. Anticancer Res 17: 3075–3077PubMedGoogle Scholar
  138. 138.
    Meinl E, Weber F, Drexler K et al. (1993) Myelin basic protein-specific T lymphocyte repertoire in multiple sclerosis. Complexity of the response and dominance of nested epitopes due to recruitment of multiple T cell clones. J Clin Invest 92: 2633–2643PubMedCrossRefGoogle Scholar
  139. 139.
    Metz LM, Zhang Y, Yeung M et al. (2004) Minocycline reduces gadolinium-enhancing magnetic resonance imaging lesions in multiple sclerosis. Ann Neurol 55: 756PubMedGoogle Scholar
  140. 140.
    Miller DH, Khan OA, Sheremata WA et al. (2003) A controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 348: 15–23PubMedGoogle Scholar
  141. 141.
    Monson NL, Cravens PD, Frohman EM et al. (2005) Effect of rituximab on the peripheral blood and cerebrospinal fluid B cells in patients with primary progressive multiple sclerosis. Arch Neurol 62: 258–264PubMedGoogle Scholar
  142. 142.
    Morini M, Roccatagliata L, Dell’Eva R et al. (2004) Alpha-lipoic acid is effective in prevention and treatment of experimental autoimmune encephalomyelitis. J Neuroimmunol 148: 146–153PubMedGoogle Scholar
  143. 143.
    Muller H, Hofer S, Kaneider N et al. (2005) The immunomodulator FTY720 interferes with effector functions of human monocyte-derived dendritic cells. Eur J Immunol 35: 533–545PubMedGoogle Scholar
  144. 144.
    Muraro PA, Douek DC, Packer A et al. (2005) Thymic output generates a new and diverse TCR repertoire after autologous stem cell transplantation in multiple sclerosis patients. J Exp Med 201: 805–816PubMedGoogle Scholar
  145. 145.
    Nash RA, Bowen JD, McSweeney PA et al. (2003) High-dose immunosuppressive therapy and autologous peripheral blood stem cell transplantation for severe multiple sclerosis. Blood 102: 2364–2372PubMedGoogle Scholar
  146. 146.
    Nashmi R, Fehlings MG (2001) Mechanisms of axonal dysfunction after spinal cord injury: with an emphasis on the role of voltage-gated potassium channels. Brain Res Brain Res Rev 38: 165–191PubMedGoogle Scholar
  147. 147.
    Neuhaus O, Strasser-Fuchs S, Fazekas F et al. (2002) Statins as immunomodulators: comparison with interferon-beta 1b in MS. Neurology 59: 990–997PubMedGoogle Scholar
  148. 148.
    Neumann H, Medana IM, Bauer J, Lassmann H (2002) Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 25: 313–319PubMedGoogle Scholar
  149. 149.
    Niino M, Bodner C, Simard ML et al. (2006) Natalizumab effects on immune cell responses in multiple sclerosis. Ann Neurol 59: 748–754PubMedGoogle Scholar
  150. 150.
    Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343: 938–952PubMedGoogle Scholar
  151. 151.
    Noseworthy JH, Wolinsky JS, Lublin FD et al. (2000) Linomide in relapsing and secondary progressive MS: part I: trial design and clinical results. North American Linomide Investigators [see comments]. Neurology 54: 1726–1733PubMedGoogle Scholar
  152. 152.
    O’Connor PW, Li D, Freedman MS (2006) A Phase II study of the safety and efficacy of teriflunomide in multiple sclerosis with relapses. Neurology 66: 894–900Google Scholar
  153. 153.
    Paemen L, Martens E, Norga K et al. (1996) The gelatinase inhibitory activity of tetracyclines and chemically modified tetracycline analogues as measured by a novel microtiter assay for inhibitors. Biochem Pharmacol 52: 105–111PubMedGoogle Scholar
  154. 154.
    Paolillo A, Coles AJ, Molyneux PD et al. (1999) Quantitative MRI in patients with secondary progressive MS treated with monoclonal antibody Campath 1H. Neurology 53: 751–757PubMedGoogle Scholar
  155. 155.
    Pershadsingh HA (2004) Peroxisome proliferator-activated receptor-gamma: therapeutic target for diseases beyond diabetes: quo vadis? Expert Opin Investig Drugs 13: 215–228PubMedCrossRefGoogle Scholar
  156. 156.
    Pershadsingh HA, Heneka MT, Saini R et al. (2004) Effect of pioglitazone treatment in a patient with secondary multiple sclerosis. J Neuroinflammation 1: 3PubMedGoogle Scholar
  157. 157.
    Pitt D, Werner P, Raine CS (2000) Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 6: 67–70PubMedGoogle Scholar
  158. 158.
    Platten M, Steinman L (2005) Multiple sclerosis: trapped in deadly glue. Nat Med 11: 252–253PubMedGoogle Scholar
  159. 159.
    Polman C, Barkhof F, Sandberg-Wollheim M et al. (2005) Treatment with laquinimod reduces development of active MRI lesions in relapsing MS. Neurology 64: 987–991PubMedGoogle Scholar
  160. 160.
    Polman CH, O’Connor PW, Havrdova E et al. (2006) A randomized, placebo-controlled trial of natalizumab for relapsing multiple sclerosis. N Engl J Med 354: 899–910PubMedGoogle Scholar
  161. 161.
    Pryce G, Ahmed Z, Hankey DJ et al. (2003) Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain 126: 2191–2202PubMedGoogle Scholar
  162. 162.
    Putheti P, Pettersson A, Soderstrom M et al. (2004) Circulating CD4+CD25+ T regulatory cells are not altered in multiple sclerosis and unaffected by disease-modulating drugs. J Clin Immunol 24: 155–161PubMedGoogle Scholar
  163. 163.
    Qin Y, Duquette P, Zhang Y et al. (2003) Intrathecal B-cell clonal expansion, an early sign of humoral immunity, in the cerebrospinal fluid of patients with clinically isolated syndrome suggestive of multiple sclerosis. Lab Invest 83: 1081–1088PubMedGoogle Scholar
  164. 164.
    Ransohoff RM (2005) Natalizumab and PML. Nat Neurosci 8: 1275PubMedGoogle Scholar
  165. 165.
    Rice GP, Filippi M, Comi G (2000) Cladribine and progressive MS: clinical and MRI outcomes of a multicenter controlled trial. Cladribine MRI-Study Group. Neurology 54: 1145–1155PubMedGoogle Scholar
  166. 166.
    Rizvi SA, Bashir K (2004) Other therapy options and future strategies for treating patients with multiple sclerosis. Neurology 12 [Suppl 6] (63): 47–54Google Scholar
  167. 167.
    Rumbach L, Racadot E, Armspach JP et al. (1996) Biological assessment and MRI monitoring of the therapeutic efficacy of a monoclonal anti-T CD4 antibody in multiple sclerosis patients. Mult Scler 1: 207–212PubMedGoogle Scholar
  168. 168.
    Rutella S, Zavala F, Danese S et al. (2005) Granulocyte colony-stimulating factor: a novel mediator of T cell tolerance. J Immunol 175: 7085–7091PubMedGoogle Scholar
  169. 169.
    Saccardi R, Mancardi GL, Solari A et al. (2005) Autologous HSCT for severe progressive multiple sclerosis in a multicenter trial: impact on disease activity and quality of life. Blood 105: 2601–2607PubMedGoogle Scholar
  170. 170.
    Sakaguchi S (2005) Naturally arising Foxp3-expressing CD25+CD4+ regulatory T cells in immunological tolerance to self and non-self. Nat Immunol 6: 345–352PubMedGoogle Scholar
  171. 171.
    Salomon B, Bluestone JA (2001) Complexities of CD28/B7: CTLA-4 costimulatory pathways in autoimmunity and transplantation. Annu Rev Immunol 19: 225–252PubMedGoogle Scholar
  172. 172.
    Samijn JP, Boekhorst PA te, Mondria T et al. (2006) Intense T cell depletion followed by autologous bone marrow transplantation for severe multiple sclerosis. J Neurol Neurosurg Psychiatry 77: 46–50PubMedGoogle Scholar
  173. 173.
    Saruhan-Direskeneli G, Weber F, Meinl E et al. (1993) Human T cell autoimmunity against myelin basic protein: CD4+ cells recognizing epitopes of the T cell receptor beta chain from a myelin basic protein-specific T cell clone. Eur J Immunol 23: 530–536PubMedGoogle Scholar
  174. 174.
    Scheinfeld N (2006) Efalizumab: a review of events reported during clinical trials and side effects. Expert Opin Drug Saf 5: 197–209PubMedGoogle Scholar
  175. 175.
    Schimrigk S, Brune N, Hellwig K et al. (2006) Oral fumaric acid esters for the treatment of active multiple sclerosis: an open-label, baseline-controlled pilot study. Eur J Neurol 13: 604–610PubMedGoogle Scholar
  176. 176.
    Schneider-Gold C, Hartung HP, Gold R (2006) Mycophenolate mofetil and tacrolimus: new therapeutic options in neuroimmunological diseases. Muscle Nerve 34: 284–291PubMedGoogle Scholar
  177. 177.
    Scott GS, Spitsin SV, Kean RB et al. (2002) Therapeutic intervention in experimental allergic encephalomyelitis by administration of uric acid precursors. Proc Natl Acad Sci U S A 99: 16303–16308PubMedGoogle Scholar
  178. 178.
    Sehgal SN (2003) Sirolimus: its discovery, biological properties, and mechanism of action. Transplant Proc 35: 7S–14SPubMedGoogle Scholar
  179. 179.
    Sellebjerg F, Sorensen TL (2003) Chemokines and matrix metalloproteinase-9 in leukocyte recruitment to the central nervous system. Brain Res Bull 61: 347–355PubMedGoogle Scholar
  180. 180.
    Sicotte NL, Giesser BS, Tandon V (2006) A pilot study of testosterone treatment for men with relapsing remitting multiple sclerosis. Neurology 66: A30Google Scholar
  181. 181.
    Sicotte NL, Liva SM, Klutch R et al. (2002) Treatment of multiple sclerosis with the pregnancy hormone estriol. Ann Neurol 52: 421–428PubMedGoogle Scholar
  182. 182.
    Sidiropoulos PI, Boumpas DT (2004) Lessons learned from anti-CD40L treatment in systemic lupus erythematosus patients. Lupus 13: 391–397PubMedGoogle Scholar
  183. 183.
    Simmons DL, Buckley CD (2005) Some new, and not so new, anti-inflammatory targets. Curr Opin Pharmacol 5: 394–397Google Scholar
  184. 184.
    Sipe JC (2005) Cladribine for multiple sclerosis: review and current status. Expert Rev Neurother 5: 721–727PubMedGoogle Scholar
  185. 185.
    Sipe JC, Romine JS, Koziol J et al. (1997) Cladribine improves relapsing-remitting MS: a double blind placebo controlled study. Neurology 48: A340Google Scholar
  186. 186.
    Sipe JC, Romine JS, Koziol JA et al. (1994) Cladribine in treatment of chronic progressive multiple sclerosis [see comments]. Lancet 344: 9–13PubMedGoogle Scholar
  187. 187.
    Sjoo F, Hassan Z, Abedi-Valugerdi M et al. (2006) Myeloablative and immunosuppressive properties of treosulfan in mice. Exp Hematol 34: 115–121PubMedGoogle Scholar
  188. 188.
    Smilek DE, Wraith DC, Hodgkinson S et al. (1991) A single amino acid change in a myelin basic protein peptide confers the capacity to prevent rather than induce experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 88: 9633–9637PubMedGoogle Scholar
  189. 189.
    Sospedra M, Martin R (2005) Antigen-specific therapies in multiple sclerosis. Int Rev Immunol 24: 393–413PubMedGoogle Scholar
  190. 190.
    Steinman L (2005) Blocking adhesion molecules as therapy for multiple sclerosis: natalizumab. Nat Rev Drug Discov 4: 510–518PubMedGoogle Scholar
  191. 191.
    Steinman L (2001) Multiple sclerosis: a two-stage disease. Nat Immunol 2: 762–764.PubMedGoogle Scholar
  192. 192.
    Storer PD, Xu J, Chavis J, Drew PD (2005) Peroxisome proliferator-activated receptor-gamma agonists inhibit the activation of microglia and astrocytes: implications for multiple sclerosis. J Neuroimmunol 161: 113–122PubMedGoogle Scholar
  193. 193.
    Stuve O, Youssef S, Weber MS et al. (2006) Immunomodulatory synergy by combination of atorvastatin and glatiramer acetate in treatment of CNS autoimmunity. J Clin Invest 116: 1037–1044PubMedGoogle Scholar
  194. 194.
    Suntharalingam G, Perry MR, Ward S et al. (2006) Cytokine storm in a phase 1 trial of the anti-CD28 monoclonal antibody TGN1412. N Engl J Med 355: 1018–1028PubMedGoogle Scholar
  195. 195.
    Thoenen H, Sendtner M (2002) Neurotrophins: from enthusiastic expectations through sobering experiences to rational therapeutic approaches. Nat Neurosci 5 [Suppl]: 1046–1050Google Scholar
  196. 196.
    Trebst C, Stangel M (2006) Promotion of remyelination by immunoglobulins: implications for the treatment of multiple sclerosis. Curr Pharm Des 12: 241–249PubMedGoogle Scholar
  197. 197.
    Tubridy N, Behan PO, Capildeo R et al. (1999) The effect of anti-alpha 4 integrin antibody on brain lesion activity in MS. Neurology 53: 466–472PubMedGoogle Scholar
  198. 198.
    Utset TO, Auger JA, Peace D et al. (2002) Modified anti-CD3 therapy in psoriatic arthritis: a phase I/II clinical trial. J Rheumatol 29: 1907–1913PubMedGoogle Scholar
  199. 199.
    Van Assche G, Van Ranst M, Sciot R et al. (2005) Progressive multifocal leukoencephalopathy after natalizumab therapy for Crohn’s disease. N Engl J Med 353: 362–368Google Scholar
  200. 200.
    Van der Aa A, Hellings N, Medaer R et al. (2003) T cell vaccination in multiple sclerosis patients with autologous CSF-derived activated T cells: results from a pilot study. Clin Exp Immunol 131: 155–168Google Scholar
  201. 201.
    Oosten BW van, Barkhof F, Truyen L et al. (1996) Increased MRI activity and immune activation in two multiple sclerosis patients treated with the monoclonal anti-tumor necrosis factor antibody cA2. Neurology 47: 1531–1534PubMedGoogle Scholar
  202. 202.
    Oosten BW van, Lai M, Barkhof F et al. (1996) A phase II trial of anti-CD4 antibodies in the treatment of multiple sclerosis. Mult Scler 1: 339–342PubMedGoogle Scholar
  203. 203.
    Vandenbark AA, Chou YK, Whitham R et al. (1996) Treatment of multiple sclerosis with T-cell receptor peptides: results of a double-blind pilot trial. Nature Medicine 2: 1109–1115PubMedGoogle Scholar
  204. 204.
    Vennekamp J, Wulff H, Beeton C et al. (2004) Kv1.3-blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. Mol Pharmacol 65: 1364–1374PubMedGoogle Scholar
  205. 205.
    Vermersch P, Waucquier N, Bourteel H (2004) Treatment of multiple sclerosis with a combination of interferon beta-1a (Avonex) and Mycophenolate mofetil (Cellcept): Results of a phase II clinical trial. Neurology 62: A259Google Scholar
  206. 206.
    Vianna-Jorge R, Suarez-Kurtz G (2004) Potassium channels in T lymphocytes: therapeutic targets for autoimmune disorders? BioDrugs 18: 329–341PubMedGoogle Scholar
  207. 207.
    Villoslada P, Hauser SL, Bartke I et al. (2000) Human nerve growth factor protects common marmosets against autoimmune encephalomyelitis by switching the balance of T helper cell type 1 and 2 cytokines within the central nervous system. J Exp Med 191: 1799–1806PubMedGoogle Scholar
  208. 208.
    Vincenti F, Kirkman R, Light S et al. (1998) Interleukin-2-receptor blockade with daclizumab to prevent acute rejection in renal transplantation. Daclizumab Triple Therapy Study Group. N Engl J Med 338: 161–165PubMedGoogle Scholar
  209. 209.
    Vollmer T, Key L, Durkalski V et al. (2004) Oral simvastatin treatment in relapsing-remitting multiple sclerosis. Lancet 363: 1607–1608PubMedGoogle Scholar
  210. 210.
    Waldmann H (1989) Manipulation of T-cell responses with monoclonal antibodies. Annu Rev Immunol 7: 407–444PubMedGoogle Scholar
  211. 211.
    Warren KG, Catz I, Wucherpfennig KW (1997) Tolerance induction to myelin basic protein by intravenous synthetic peptides containing epitope P85 VVHFFKNIVTP96 in chronic progressive multiple sclerosis. J Neurol Sci 152: 31–38PubMedGoogle Scholar
  212. 212.
    Waxman SG, Craner MJ, Black JA (2004) Na+ channel expression along axons in multiple sclerosis and its models. Trends Pharmacol Sci 25: 584–591PubMedGoogle Scholar
  213. 213.
    Weiner HL, Mackin GA, Matsui M et al. (1993) Double-blind pilot trial of oral tolerization with myelin antigens in multiple sclerosis. Science 259: 1321–1324PubMedGoogle Scholar
  214. 214.
    Weinshenker BG, Bass B, Karlik S et al. (1991) An open trial of OKT3 in patients with multiple sclerosis. Neurology 41: 1047–1052PubMedGoogle Scholar
  215. 215.
    Weissert R, Wiendl H, Pfrommer H et al. (2003) Action of treosulfan in myelin-oligodendrocyte-glycoprotein-induced experimental autoimmune encephalomyelitis and human lymphocytes. J Neuroimmunol 144: 28–37PubMedGoogle Scholar
  216. 216.
    Werner P, Pitt D, Raine CS (2001) Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 50: 169–180PubMedGoogle Scholar
  217. 217.
    Wiendl H, Hohlfeld R (2002) Therapeutic approaches in multiple sclerosis: lessons from failed and interrupted treatment trials. BioDrugs 16: 183–200PubMedGoogle Scholar
  218. 218.
    Wiendl H, Kieseier BC, Weissert R et al. (2007) Treatment of active secondary progressive multiple sclerosis with treosulfan: an open label pilot study. J Neurol (in press)Google Scholar
  219. 219.
    Willenborg DO, Staykova MA, Miyasaka M (1996) Short term treatment with soluble neuroantigen and anti-CD11a (LFA-1) protects rats against autoimmune encephalomyelitis: treatment abrogates autoimmune disease but not autoimmunity. J Immunol 157: 1973–1980PubMedGoogle Scholar
  220. 220.
    Yadav V, Marracci G, Lovera J et al. (2005) Lipoic acid in multiple sclerosis: a pilot study. Mult Scler 11: 159–165PubMedGoogle Scholar
  221. 221.
    Yong VW, Wells J, Giuliani F et al. (2004) The promise of minocycline in neurology. Lancet Neurol 3: 744–751PubMedGoogle Scholar
  222. 222.
    Yousry TA, Major EO, Ryschkewitsch C et al. (2006) Evaluation of patients treated with natalizumab for progressive multifocal leukoencephalopathy. N Engl J Med 354: 924–933PubMedGoogle Scholar
  223. 223.
    Youssef S, Stuve O, Patarroyo JC et al. (2002) The HMG-CoA reductase inhibitor, atorvastatin, promotes a Th2 bias and reverses paralysis in central nervous system autoimmune disease. Nature 420: 78–84PubMedGoogle Scholar
  224. 224.
    Zajicek J, Fox P, Sanders H et al. (2003) Cannabinoids for treatment of spasticity and other symptoms related to multiple sclerosis (CAMS study): multicentre randomised placebo-controlled trial. Lancet 362: 1517–1526PubMedGoogle Scholar
  225. 225.
    Zang YC, Hong J, Rivera VM et al. (2000) Preferential recognition of TCR hypervariable regions by human anti-idiotypic T cells induced by T cell vaccination. J Immunol 164: 4011–4017PubMedGoogle Scholar
  226. 226.
    Zipp F, Hartung HP, Hillert J et al. (2005) Blockade of chemokine receptor in multiple sclerosis patients. Mult Scler 11: S13Google Scholar
  227. 227.
    Zipp F, Krammer PH, Weller M (1999) Immune (dys)regulation in multiple sclerosis: role of the CD95-CD95 ligand system. Immunol Today 20: 550–554PubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2007

Authors and Affiliations

  • C. Kleinschnitz
    • 1
  • S.G. Meuth
    • 1
  • B.C. Kieseier
    • 2
  • H. Wiendl
    • 1
  1. 1.Neurologische Klinik und PoliklinikUniversitätsklinikumWürzburgDeutschland
  2. 2.Neurologische Klinik und Poliklinik UniversitätsklinikumDüsseldorfDeutschland

Personalised recommendations