Der Nervenarzt

, Volume 77, Issue 10, pp 1210–1217 | Cite as

Long-QT-Syndrom als Differenzialdiagnose einer Grand-Mal-Epilepsie

Fallbericht, Stammbaum, Therapieoptionen und Literaturübersicht
  • S. Betge
  • E. Schulze-Bahr
  • C. Fitzek
  • R. Pfeifer
  • H.-R. Figulla
  • O. W. Witte
  • S. Isenmann
Article

Zusammenfassung

Eine 24-jährige Patientin mit bekannter Grand-Mal-Epilepsie wurde nach prolongierter Reanimation eingewiesen. Klinik und Zusatzdiagnostik erbrachten einen schweren hypoxischen Hirnschaden mit Abschätzung einer schlechten Prognose hinsichtlich des neurologischen Langzeitergebnisses. Diese bestätigte sich im weiteren Verlauf über zwei Jahre. Bei verlängerter QT-Zeit im EKG und genauer Anamneseerhebung mussten die vormaligen Ereignisse als kardiale Synkopen bei Long-QT-Syndrom (LQTS) gedeutet werden. Die in solchen Fällen zwingend notwendige Anamneseerhebung, EKG-Registrierung und molekulargenetische Analyse bei den Familienmitgliedern ergab die Diagnose eines familiären LQTS in 8 Fällen, in 2 Fällen bereits mit bis dahin ungeklärtem plötzlichem Herztod. Zur Prophylaxe weiterer Ereignisse wurden betroffene Familienangehörige mit β-Blockern behandelt bzw. mit AICD-Aggregaten (automatischer implantierbarer Kardioverter-Defibrillator) versorgt. Die aktuelle Literatur hinsichtlich des LQTS, der Differenzierung der kardialen Synkope zur Epilepsie sowie der Einschätzung der Prognose eines hypoxischen Hirnschadens werden diskutiert.

Schlüsselwörter

Epilepsie Hypoxischer Hirnschaden Kardiale Synkopen Kardiopulmonale Reanimation Long-QT-Syndrom 

Long QT syndrome causing grand mal epilepsy

Case report, pedigree, therapeutic options, and review of the literature

Summary

A 24-year-old female with a history of epileptic seizures was admitted after prolonged cardiac resuscitation. The clinical course together with additional examinations led to the diagnosis of severe hypoxic cerebral damage, with poor prognosis for neurological outcome. In her initial ECG, as in the ECGs of several family members, QT prolongation was diagnosed. Meticulous history taking and ensuing genetic analysis led to the diagnosis of familial long QT syndrome (LQTS) with a mutation in the LQT-2 gene (HERG). In retrospect, the previous seizure episodes have to be considered cardiac syncopes. Two family members had previously died suddenly, and ECG and genetic analysis revealed that a total of eight family members were affected. These relatives were prophylactically treated with beta blockers or supplied with automated implantable cardioverter defibrillating devices. The literature concerning LQTS, diagnosis and prognosis of cerebral hypoxic damage, and differentiation between seizures and cardiac syncopes is discussed.

Keywords

Cardiac syncope Cardiopulmonary resuscitation Epilepsy Hypoxic cerebral damage Long QT syndrome 

Literatur

  1. 1.
    Batchvarov V, Malik M (2002) Individual patterns of QT/RR relationship. Card Electrophysiol Rev 6:282–288CrossRefPubMedGoogle Scholar
  2. 2.
    Bernard SA, Gray TW, Buist MD et al. (2002) Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 346:557–563CrossRefPubMedGoogle Scholar
  3. 3.
    Chauhan VS, Krahn AD, Klein GJ et al. (2004) Utility of a simplified lidocaine and potassium infusion in diagnosing long QT syndrome among patients with borderline QTc interval prolongation. Ann Noninvasive Electrocardiol 9:12–18CrossRefPubMedGoogle Scholar
  4. 4.
    Chauhan VS, Krahn AD, Mitoff P et al. (2004) Sudden intense exercise increases QT heart rate slope and T wave complexity in long QT syndrome and normal subjects. Pacing Clin Electrophysiol 27:1415–1423CrossRefPubMedGoogle Scholar
  5. 5.
    Danielsson BR, Lansdell K, Patmore L et al. (2003) Phenytoin and phenobarbital inhibit human HERG potassium channels. Epilepsy Res 55:147–157CrossRefPubMedGoogle Scholar
  6. 6.
    Els T, Kassubek J, Kubalek R et al. (2004) Diffusion-weighted MRI during early global cerebral hypoxia: a predictor for clinical outcome? Acta Neurol Scand 110:361–367CrossRefPubMedGoogle Scholar
  7. 7.
    Group THaCAS (2002) Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 346:549–556CrossRefPubMedGoogle Scholar
  8. 8.
    Haverkamp W, Haverkamp F, Breithardt G (2002) Drug-induced QT prolongation and Torsade de Pointes. Dtsch Arztebl 99:1972–1979Google Scholar
  9. 9.
    Hunt DP, Tang K (2005) Long QT syndrome presenting as epileptic seizures in an adult. Emerg Med J 22:600–601CrossRefPubMedGoogle Scholar
  10. 10.
    January CT, Gong Q, Zhou Z (2000) Long QT syndrome: cellular basis and arrhythmia mechanism in LQT2. J Cardiovasc Electrophysiol 11:1413–1418CrossRefPubMedGoogle Scholar
  11. 11.
    Karjalainen J, Viitasalo M, Manttari M et al. (1994) Relation between QT intervals and heart rates from 40 to 120 beats/min in rest electrocardiograms of men and a simple method to adjust QT interval values. J Am Coll Cardiol 23:1547–1553PubMedGoogle Scholar
  12. 12.
    Kovalev DV, Skibitskii VV (2003) [Romano-Ward syndrome initially diagnosed as epilepsy]. Kardiologiia 43:100–104PubMedGoogle Scholar
  13. 13.
    Kwon S, Lee S, Hyun M et al. (2004) The potential for QT prolongation by antiepileptic drugs in children. Pediatr Neurol 30:99–101CrossRefPubMedGoogle Scholar
  14. 14.
    Lempert T (1997) [Syncope. Phenomenology and differentiation from epileptic seizures]. Nervenarzt 68:620–624CrossRefPubMedGoogle Scholar
  15. 15.
    Malik M (2003) Assessment of T-wave morphology. Mayo Clin Proc 78:18–20PubMedGoogle Scholar
  16. 16.
    McKinney AM, Teksam M, Felice R et al. (2004) Diffusion-weighted imaging in the setting of diffuse cortical laminar necrosis and hypoxic-ischemic encephalopathy. AJNR Am J Neuroradiol 25:1659–1665PubMedGoogle Scholar
  17. 17.
    Moss AJ, Robinson JL, Gessman L et al. (1999) Comparison of clinical and genetic variables of cardiac events associated with loud noise versus swimming among subjects with the long QT syndrome. Am J Cardiol 84:876–879CrossRefPubMedGoogle Scholar
  18. 18.
    Nemec J, Hejlik JB, Shen WK et al. (2003) Catecholamine-induced T-wave lability in congenital long QT syndrome: a novel phenomenon associated with syncope and cardiac arrest. Mayo Clin Proc 78:40–50PubMedGoogle Scholar
  19. 19.
    Paulussen AD, Gilissen RA, Armstrong M et al. (2004) Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J Mol Med 82:182–188CrossRefPubMedGoogle Scholar
  20. 20.
    Pfeifer R, Borner A, Krack A et al. (2005) Outcome after cardiac arrest: predictive values and limitations of the neuroproteins neuron-specific enolase and protein S-100 and the Glasgow Coma Scale. Resuscitation 65:49–55CrossRefPubMedGoogle Scholar
  21. 21.
    Priori SG, Schwartz PJ, Napolitano C et al. (2003) Risk stratification in the long-QT syndrome. N Engl J Med 348:1866–1874CrossRefPubMedGoogle Scholar
  22. 22.
    Roden DM, Viswanathan PC (2005) Genetics of acquired long QT syndrome. J Clin Invest 115:2025–2032CrossRefPubMedGoogle Scholar
  23. 23.
    Sen-Chowdhry S, McKenna WJ (2006) Sudden cardiac death in the young: a strategy for prevention by targeted evaluation. Cardiology 105:196–206CrossRefPubMedGoogle Scholar
  24. 24.
    Swan H, Viitasalo M, Piippo K et al. (1999) Sinus node function and ventricular repolarization during exercise stress test in long QT syndrome patients with KvLQT1 and HERG potassium channel defects. J Am Coll Cardiol 34:823–829CrossRefPubMedGoogle Scholar
  25. 25.
    Swenne CA (2002) Neurocardiological basis for intraindividual ECG variability. J Electrocardiol 35:239–242CrossRefPubMedGoogle Scholar
  26. 26.
    Tanabe Y, Inagaki M, Kurita T et al. (2001) Sympathetic stimulation produces a greater increase in both transmural and spatial dispersion of repolarization in LQT1 than LQT2 forms of congenital long QT syndrome. J Am Coll Cardiol 37:911–919CrossRefPubMedGoogle Scholar
  27. 27.
    Tha KK, Terae S, Yamamoto T et al. (2005) Early detection of global cerebral anoxia: improved accuracy by high-b-value diffusion-weighted imaging with long echo time. AJNR Am J Neuroradiol 26:1487–1497PubMedGoogle Scholar
  28. 28.
    Vincent GM (2003) The long-QT syndrome—bedside to bench to bedside. N Engl J Med 348:1837–1838CrossRefPubMedGoogle Scholar
  29. 29.
    Wijdicks EF, Campeau NG, Miller GM (2001) MR imaging in comatose survivors of cardiac resuscitation. AJNR Am J Neuroradiol 22:1561–1565PubMedGoogle Scholar
  30. 30.
    Witzenbichler B, Schulze-Bahr E, Haverkamp W et al. (2003) [18-year old patient with anti-epileptic therapy and sudden cardiac death]. Z Kardiol 92:747–753CrossRefPubMedGoogle Scholar
  31. 31.
    Yang P, Kanki H, Drolet B et al. (2002) Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 105:1943–1948CrossRefPubMedGoogle Scholar
  32. 32.
    Zandbergen EG, de Haan RJ, Stoutenbeek CP et al. (1998) Systematic review of early prediction of poor outcome in anoxic-ischaemic coma. Lancet 352:1808–1812CrossRefPubMedGoogle Scholar
  33. 33.
    Zandbergen EG, Hijdra A, Koelman JH et al. (2006) Prediction of poor outcome within the first 3 days of postanoxic coma. Neurology 66:62–68CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  • S. Betge
    • 1
  • E. Schulze-Bahr
    • 3
    • 4
  • C. Fitzek
    • 2
  • R. Pfeifer
    • 1
  • H.-R. Figulla
    • 1
  • O. W. Witte
    • 5
  • S. Isenmann
    • 5
  1. 1.Klinik für Innere Medizin IUniversitätsklinikum der Friedrich-Schiller-UniversitätJenaDeutschland
  2. 2.Institut für diagnostische und Interventionelle RadiologieUniversitätsklinikum der Friedrich-Schiller-UniversitätJenaDeutschland
  3. 3.Medizinische Klinik und Poliklinik CUniversitätsklinikumMünsterDeutschland
  4. 4.Leibniz-Institut für ArterioskleroseforschungMünsterDeutschland
  5. 5.Stroke Unit und Neurologische Intensivstation, Klinik für NeurologieFriedrich-Schiller-UniversitätJenaDeutschland

Personalised recommendations