Advertisement

Der Nervenarzt

, Volume 78, Issue 1, pp 45–52 | Cite as

Neuere Antipsychotika

Unterschiede im Nebenwirkungsprofil bei Frauen und Männern
  • W. Aichhorn
  • A. B. Whitworth
  • E. M. Weiss
  • H. Hinterhuber
  • J. MarksteinerEmail author
Übersichten

Zusammenfassung

In dieser Übersichtsarbeit diskutieren wir, ob es geschlechtsspezifische Unterschiede im Nebenwirkungsprofil von Antipsychotika (AP) der 2. Generation gibt. Die Ergebnisse stützen sich auf eine Medline-Suche für die Jahre 1974 bis Dezember 2005. Obwohl sich Frauen und Männer in ihrer Pharmakokinetik unterscheiden, wurden höhere Plasmaspiegel bei Frauen bisher nur für Clozapin und Olanzapin nachgewiesen. Eine Hyperprolaktinämie, die besonders unter Risperidon und Amisulprid gefunden wird, ist bei Frauen im Vergleich zu Männern stärker ausgeprägt. Die meisten Studien zeigen, dass Clozapin und Olanzapin mit der stärksten Gewichtszunahme einhergehen und dass diese bei Frauen tendenziell stärker ist. Die wenigen Studien, die es gibt, geben weiter eine höhere Prävalenz des metabolischen Syndroms bei Frauen an. Für die neueren AP gibt es sehr wahrscheinlich keine geschlechtsspezifischen Unterschiede in der Häufigkeit und Schwere von akuten oder chronischen Bewegungsstörungen. Frauen besitzen hingegen ein erhöhtes Risiko einer Störung der kardialen Repolarisation (QT-Verlängerung) mit der Gefahr von Torsades-de-Pointes-Arrhythmien unter antipsychotischer Therapie. Zusammenfassend finden sich zwar deutliche Hinweise auf geschlechtsspezifische Unterschiede im Nebenwirkungsprofil der neueren AP, doch gerade in der Beurteilung etwaiger klinischer Konsequenzen bleibt vieles zurzeit noch spekulativ. Wir benötigen prospektive Studien, die geschlechtsspezifische Aspekte als primäre Untersuchungsparameter haben, um die Bedeutung dieser Unterschiede für die Behandlung von Frauen verlässlich abschätzen zu können.

Schlüsselwörter

Antipsychotika der 2. Generation Geschlechtsspezifische Aspekte Nebenwirkung 

Differences between men and women in side effects of second-generation antipsychotics

Summary

In this review we investigate whether sex differences exist for side effects of second-generation antipsychotics. Results are based on a MEDLINE search for the years 1974 through 2005. Even if pharmacokinetics differ between females and males, significantly higher plasma levels for women have been demonstrated only for olanzapine and clozapine. Hyperprolactinaemia is mainly induced by treatment with risperidone and amisulpride, and there is evidence for more pronounced prolactin levels in females. Most studies reviewed indicate that clozapine and olanzapine are associated with more body weight gain, once more especially in female patients. Furthermore, the few published studies indicate that metabolic syndrome is more frequent in females and there are likely no gender-specific differences between the new antipsychotic medications concerning frequency and degree of acute or chronic movement disturbance. The risk of QT prolongation with torsades de pointes arrhythmia is again higher in females. In conclusion, there is some evidence of sex differences in the side effects of second-generation antipsychotics. For better understanding of the basic mechanisms in sex differences, future studies with a primary focus on this topic are required. More specific data will help to determine how these differences shall affect clinical management.

Keywords

Second-generation antipsychotics Gender-specific differences Side effects 

Notes

Interessenkonflikt

Es besteht kein Interessenkonflikt. Der korrespondierende Autor versichert, dass keine Verbindungen mit einer Firma, deren Produkt in dem Artikel genannt ist, oder einer Firma, die ein Konkurrenzprodukt vertreibt, bestehen. Die Präsentation des Themas ist unabhängig und die Darstellung der Inhalte produktneutral.

Literatur

  1. 1.
    Aichhorn W, Weiss U, Marksteiner J et al. (2005) Influence of age and gender on risperidone plasma concentrations. J Psychopharmacol 19:395–401CrossRefPubMedGoogle Scholar
  2. 2.
    Aichhorn W, Marksteiner J, Walch T et al. (2006) Influence of age, gender, body weight and valproate comedication on quetiapine plasma concentrations. Int Clin Psychopharmacol 21:81–85CrossRefPubMedGoogle Scholar
  3. 3.
    Aizenberg D, Zemishlany Z, Dorfman-Etrog P et al. (1995) Sexual dysfunction in male schizophrenic patients. J Clin Psychiatry 56:137–141PubMedGoogle Scholar
  4. 4.
    Aizenberg D, Modai I, Landa A et al. (2001) Comparison of sexual dysfunction in male schizophrenic patients maintained on treatment with classical antipsychotics versus clozapine. J Clin Psychiatry 62:541–544PubMedGoogle Scholar
  5. 5.
    Allison DB, Mentore JL, Heo M et al. (1999) Antipsychotic-induced weight gain: a comprehensive research synthesis. Am J Psychiatry 156:1686–1696PubMedGoogle Scholar
  6. 6.
    Atmaca M, Kuloglu M, Tezcan E et al. (2003) Weight gain, serum leptin and triglyceride levels in patients with schizophrenia on antipsychotic treatment with quetiapine, olanzapine and haloperidol. Schizophr Res 60:99–100CrossRefPubMedGoogle Scholar
  7. 7.
    Bailey MS, Curtis AB (2002) The effects of hormones on arrhythmias in women. Curr Womens Health Rep 2:83–88PubMedGoogle Scholar
  8. 8.
    Basson BR, Kinon BJ, Taylor CC et al. (2001) Factors influencing acute weight change in patients with schizophrenia treated with olanzapine, haloperidol, or risperidone. J Clin Psychiatry 62:231–238PubMedGoogle Scholar
  9. 9.
    Beierle I, Meibohm B, Derendorf H (1999) Gender differences in pharmacokinetics and pharmacodynamics. Int J Clin Pharmacol Ther 37:529–547PubMedGoogle Scholar
  10. 10.
    Bobes J, Rejas J, Garcia-Garcia M et al. (2003) Weight gain in patients with schizophrenia treated with risperidone, olanzapine, quetiapine or haloperidol: results of the EIRE study. Schizophr Res 62:77–88CrossRefPubMedGoogle Scholar
  11. 11.
    Casey DE, Zorn SH (2001) The pharmacology of weight gain with antipsychotics. J Clin Psychiatry 62(Suppl 7):4–10Google Scholar
  12. 12.
    Citrome LL (2004) The increase in risk of diabetes mellitus from exposure to second-generation antipsychotic agents. Drugs Today (Barc) 40:445–64Google Scholar
  13. 13.
    Citrome L, Jaffe A, Levine J et al. (2004) Relationship between antipsychotic medication treatment and new cases of diabetes among psychiatric inpatients. Psychiatr Serv 55:1006–1013CrossRefPubMedGoogle Scholar
  14. 14.
    Claus A, Bollen J, De Cuyper H et al. (1992) Risperidone versus haloperidol in the treatment of chronic schizophrenic inpatients: a multicentre double-blind comparative study. Acta Psychiatr Scand 85:295–305PubMedGoogle Scholar
  15. 15.
    Clemens JA, Smalstig EB, Sawyer BD (1974) Antipsychotic-Drugs stimulate prolactin-release. Psychopharmacologia 40:123–127CrossRefPubMedGoogle Scholar
  16. 16.
    Compton MT, Miller AH (2002) Antipsychotic-induced hyperprolactinemia and sexual dysfunction. Psychopharmacol Bull 36:143–164PubMedGoogle Scholar
  17. 17.
    Conley RR (2000) Risperidone side effects. J Clin Psychiatry 61(Suppl 8):20–23Google Scholar
  18. 18.
    Croke S, Buist A, Hackett LP et al. (2002) Olanzapine excretion in human breast milk: estimation of infant exposure. Int J Neuropsychopharmacol 5:243–247CrossRefPubMedGoogle Scholar
  19. 19.
    Datz FL, Christian PE, Moore J (1987) Gender-related differences in gastric-emptying. J Nucl Med 28:1204–1207PubMedGoogle Scholar
  20. 20.
    Drici MD, Clement N (2001) Is gender a risk factor for adverse drug reactions? The example of drug-induced long QT syndrome. Drug Saf 24:575–585CrossRefPubMedGoogle Scholar
  21. 21.
    Ebenbichler CF, Laimer M, Eder U et al. (2003) Olanzapine induces insulin resistance: results from a prospective study. J Clin Psychiatry 64:1436–1439PubMedGoogle Scholar
  22. 22.
    Flores PJ, Juarez OH, Flores PC et al. (2003) Effect of menstrual cycle on the pharmacokinetics of ranitidine in healthy volunteers. J Clin Pharmacol 43:1026Google Scholar
  23. 23.
    Frankenburg FR, Zanarini MC, Kando J et al. (1998) Clozapine and body mass change. Biol Psychiatry 43:520–524CrossRefPubMedGoogle Scholar
  24. 24.
    Gex-Fabry M, Balant-Gorgia AE, Balant LP (2003) Therapeutic drug monitoring of olanzapine: the combined effect of age, gender, smoking, and comedication. Ther Drug Monit 25:46–53CrossRefPubMedGoogle Scholar
  25. 25.
    Goff DC, Posever T, Herz L et al. (1998) An exploratory haloperidol-controlled dose-finding study of ziprasidone in hospitalized patients with schizophrenia or schizoaffective disorder. J Clin Psychopharmacol 18:296–304CrossRefPubMedGoogle Scholar
  26. 26.
    Goodnick PJ, Rodriguez L, Santana O (2002) Antipsychotics: impact on prolactin levels. Expert Opin Pharmacother 3:1381–1391CrossRefPubMedGoogle Scholar
  27. 27.
    Grunder G, Wetzel H, Schlosser R et al. (1999) Neuroendocrine response to antipsychotics: effects of drug type and gender. Biol Psychiatry 45:89–97CrossRefPubMedGoogle Scholar
  28. 28.
    Guengerich FP (1990) Inhibition of oral-contraceptive steroid metabolizing enzymes by steroids and drugs. Am J Obstet Gynecol 163:2159–2163PubMedGoogle Scholar
  29. 29.
    Gur RC, Gur RE, Obrist WD et al. (1982) Sex and handedness differences in cerebral blood-flow during rest and cognitive activity. Science 217:659–661PubMedGoogle Scholar
  30. 30.
    Haddad PM, Anderson IM (2002) Antipsychotic-related QTc prolongation, torsade de pointes and sudden death. Drugs 62:1649–1671CrossRefPubMedGoogle Scholar
  31. 31.
    Haddad PM, Wieck A (2004) Antipsychotic-induced hyperprolactinaemia: mechanisms, clinical features and management. Drugs 64:2291–2314CrossRefPubMedGoogle Scholar
  32. 32.
    Haddad L, Milke P, Zapata L et al. (1998) Effect of the menstrual cycle in ethanol pharmacokinetics. J Appl Toxicol 18:15–18CrossRefPubMedGoogle Scholar
  33. 33.
    Hafner H (2003) Gender differences in schizophrenia. Psychoneuroendocrinology 28:17–54CrossRefPubMedGoogle Scholar
  34. 34.
    Hafner H, an der Heiden W, Behrens S et al. (1998) Causes and consequences of the gender difference in age at onset of schizophrenia. Schizophr Bull 24:99–113PubMedGoogle Scholar
  35. 35.
    Hagg S, Spigset O, Dahlqvist R (2001) Influence of gender and oral contraceptives on CYP2D6 and CYP2C19 activity in healthy volunteers. Br J Clin Pharmacol 51:169–173CrossRefPubMedGoogle Scholar
  36. 36.
    Haring C, Meise U, Humpel C et al. (1989) Dose-related plasma-levels of clozapine – influence of smoking-behavior, sex and age. Psychopharmacology 99:S38–S40CrossRefPubMedGoogle Scholar
  37. 37.
    Harrigan EP, Miceli JJ, Anziano R et al. (2004) A randomized evaluation of the effects of six antipsychotic agents on QTc, in the absence and presence of metabolic inhibition. J Clin Psychopharmacol 24:62–69CrossRefPubMedGoogle Scholar
  38. 38.
    Hasselstrom J, Linnet K (2004) Quetiapine serum concentrations in psychiatric patients: the influence of comedication. Ther Drug Monit 26:486–491CrossRefPubMedGoogle Scholar
  39. 39.
    Hill RC, McIvor RJ, Wojnar-Horton RE et al. (2000) Risperidone distribution and excretion into human milk: case report and estimated infant exposure during breast-feeding. J Clin Psychopharmacol 20:285–286CrossRefGoogle Scholar
  40. 40.
    Homel P, Casey D, Allison DB (2002) Changes in body mass index for individuals with and without schizophrenia, 1987–1996. Schizophr Res 55:277–284CrossRefPubMedGoogle Scholar
  41. 41.
    Hummer M, Huber J (2004) Hyperprolactinaemia and antipsychotic therapy in schizophrenia. Curr Med Res Opin 20:189–197CrossRefPubMedGoogle Scholar
  42. 42.
    Hummer M, Malik P, Gasser RW et al. (2005) Osteoporosis in patients with schizophrenia. Am J Psychiatry 162:162–167CrossRefPubMedGoogle Scholar
  43. 43.
    Kamimori GH, Joubert A, Otterstetter R et al. (1999) The effect of the menstrual cycle on the pharmacokinetics of caffeine in normal, healthy eumenorrheic females. Eur J Clin Pharmacol 55:445–449CrossRefPubMedGoogle Scholar
  44. 44.
    Kashuba ADM, Nafziger AN (1998) Physiological changes during the menstrual cycle and their effects on the pharmacokinetics and pharmacodynamics of drugs. Clin Pharmacokinet 34:203–218CrossRefPubMedGoogle Scholar
  45. 45.
    Kirchheiner J, Berghofer A, Bolk-Weischedel D (2000) Healthy outcome under olanzapine treatment in a pregnant woman. Pharmacopsychiatry 33:78–80CrossRefPubMedGoogle Scholar
  46. 46.
    Kleinberg DL, Davis JM, de Coster R et al. (1999) Prolactin levels and adverse events in patients treated with risperidone. J Clin Psychopharmacol 19:57–61CrossRefPubMedGoogle Scholar
  47. 47.
    Knegtering R, Castelein S, Bous H et al. (2004) A randomized open-label study of the impact of quetiapine versus risperidone on sexual functioning. J Clin Psychopharmacol 24:56–61CrossRefPubMedGoogle Scholar
  48. 48.
    Kopecek M, Bares M, Svarc J et al. (2004) Hyperprolactinemia after low dose of amisulpride. Neuro Endocrinol Lett 25:419–422PubMedGoogle Scholar
  49. 49.
    Kraus T, Haack M, Schuld A et al. (1999) Body weight and leptin plasma levels during treatment with antipsychotic drugs. Am J Psychiatry 156:312–314PubMedGoogle Scholar
  50. 50.
    Lamberti JS, Crilly JF, Maharaj K et al. (2004) Prevalence of diabetes mellitus among outpatients with severe mental disorders receiving atypical antipsychotic drugs. J Clin Psychiatry 65:702–706PubMedGoogle Scholar
  51. 51.
    Lanczik M, Knoche M, Fritze J (1998) [Psychopharmacotherapy during pregnancy and lactation. 1: Pregnancy]. Nervenarzt 69:1–9CrossRefGoogle Scholar
  52. 52.
    Lanczik M, Knoche M, Fritze J (1998) [Psychopharmacotherapy in pregnancy and lactation. 2: Lactation]. Nervenarzt 69:10–14CrossRefPubMedGoogle Scholar
  53. 53.
    Lane HY, Chang YC, Chang WH et al. (1999) Effects of gender and age on plasma levels of clozapine and its metabolites: analyzed by critical statistics. J Clin Psychiatry 60:36–40Google Scholar
  54. 54.
    Langer G, Sachar EJ, Gruen PH et al. (1977) Human prolactin responses to neuroleptic drugs correlate with anti-schizophrenic potency. Nature 266:639–640CrossRefPubMedGoogle Scholar
  55. 55.
    Marder SR, McQuade RD, Stock E et al. (2003) Aripiprazole in the treatment of schizophrenia: safety and tolerability in short-term, placebo-controlled trials. Schizophr Res 61:123–136CrossRefPubMedGoogle Scholar
  56. 56.
    McKenna K, Koren G, Tetelbaum M et al. (2005) Pregnancy outcome of women using atypical antipsychotic drugs: a prospective comparative study. J Clin Psychiatry 66:444–449PubMedGoogle Scholar
  57. 57.
    Meibohm B, Beierle I, Derendorf H (2002) How important are gender differences in pharmacokinetics? Clin Pharmacokinet 41:329–342CrossRefPubMedGoogle Scholar
  58. 58.
    Melkersson K (2005) Differences in prolactin elevation and related symptoms of atypical antipsychotics in schizophrenic patients. J Clin Psychiatry 66:761–767PubMedGoogle Scholar
  59. 59.
    Melkersson KI, Dahl ML (2003) Relationship between levels of insulin or triglycerides and serum concentrations of the atypical antipsychotics clozapine and olanzapine in patients on treatment with therapeutic doses. Psychopharmacology (Berl) 170:157–166Google Scholar
  60. 60.
    Melkersson KI, Dahl ML, Hulting AL (2004) Guidelines for prevention and treatment of adverse effects of antipsychotic drugs on glucose-insulin homeostasis and lipid metabolism. Psychopharmacology (Berl) 175:1–6Google Scholar
  61. 61.
    Meltzer HY, Davidson M, Glassman AH et al. (2002) Assessing cardiovascular risks versus clinical benefits of atypical antipsychotic drug treatment. J Clin Psychiatry 63:25–29Google Scholar
  62. 62.
    Montgomery J, Winterbottom E, Jessani M et al. (2004) Prevalence of hyperprolactinemia in schizophrenia: association with typical and atypical antipsychotic treatment. J Clin Psychiatry 65:1491–1498PubMedGoogle Scholar
  63. 63.
    Newcomer JW (2005) Second-generation (atypical) antipsychotics and metabolic effects – A comprehensive literature review. CNS Drugs 19:1–93CrossRefGoogle Scholar
  64. 64.
    O’Keane V, Meaney AM (2005) Antipsychotic drugs: a new risk factor for osteoporosis in young women with schizophrenia? J Clin Psychopharmacol 25:26–31CrossRefPubMedGoogle Scholar
  65. 65.
    Oksbjerg DS, Munk LT, Mellemkjaer L et al. (2003) Schizophrenia and the risk for breast cancer. Schizophr Res 62:89–92CrossRefPubMedGoogle Scholar
  66. 66.
    Ollendorf DA, Joyce AT, Rucker M (2004) Rate of new-onset diabetes among patients treated with atypical or conventional antipsychotic medications for schizophrenia. Med Gen Med 6:5Google Scholar
  67. 67.
    Ostbye T, Curtis LH, Masselink LE et al. (2004) Atypical antipsychotic drugs and diabetes mellitus in a large outpatient population: a retrospective cohort study. Pharmacoepidemiol Drug Saf 14:403–405Google Scholar
  68. 68.
    Parkinson A, Mudra DR, Johnson C et al. (2004) The effects of gender, age, ethnicity, and liver cirrhosis on cytochrome P450 enzyme activity in human liver microsomes and inducibility in cultured human hepatocytes. Toxicol Appl Pharmacol 199:193–209CrossRefPubMedGoogle Scholar
  69. 69.
    Petty RG (1999) Prolactin and antipsychotic medications: mechanism of action. Schizophr Res 35:S67–S73CrossRefPubMedGoogle Scholar
  70. 70.
    Pollock BG (1997) Gender differences in psychotropic drug metabolism. Psychopharmacol Bull 33:235–241PubMedGoogle Scholar
  71. 71.
    Prior TI, Baker GB (2003) Interactions between the cytochrome P450 system and the second-generation antipsychotics. J Psychiatry Neurosci 28:99–112PubMedGoogle Scholar
  72. 72.
    Ragland JD, Coleman AR, Gur RC et al. (2000) Sex differences in brain-behavior relationships between verbal episodic memory and resting regional cerebral blood flow. Neuropsychologia 38:451–461CrossRefPubMedGoogle Scholar
  73. 73.
    Rodriguez I, Kilborn MJ, Liu XK et al. (2001) Drug-induced QT prolongation in women during the menstrual cycle. JAMA 285:1322–1326CrossRefPubMedGoogle Scholar
  74. 74.
    Roe CM, Odell KW, Henderson RR (2003) Concomitant use of antipsychotics and drugs that may prolong the QT interval. J Clin Psychopharmacol 23:197–200CrossRefPubMedGoogle Scholar
  75. 75.
    Russell JM, Mackell JA (2001) Bodyweight gain associated with atypical antipsychotics: epidemiology and therapeutic implications. CNS Drugs 15:537–551CrossRefPubMedGoogle Scholar
  76. 76.
    Salokangas RKR (2004) Gender and the use of neuroleptics in schizophrenia. Schizophr Res 66:41–49CrossRefPubMedGoogle Scholar
  77. 77.
    Schlosser R, Grunder G, Anghelescu I et al. (2002) Long-term effects of the substituted benzamide derivative amisulpride on baseline and stimulated prolactin levels. Neuropsychobiology 46:33–40CrossRefPubMedGoogle Scholar
  78. 78.
    Seeman MV (2004) Gender differences in the prescribing of antipsychotic drugs. Am J Psychiatry 161:1324–1333CrossRefPubMedGoogle Scholar
  79. 79.
    Tamminga WJ, Wemer J, Oosterhuis B et al. (1999) CYP2D6 and CYP2C19 activity in a large population of Dutch healthy volunteers: indications for oral contraceptive-related gender differences. Eur J Clin Pharmacol 55:177–184CrossRefPubMedGoogle Scholar
  80. 80.
    Tandon R (2002) Safety and tolerability: how do newer generation “atypical” antipsychotics compare? Psychiatr Q 73:297–311CrossRefPubMedGoogle Scholar
  81. 81.
    Tracy TS, Venkataramanan R, Glover DD et al. (2005) Temporal changes in drug metabolism (CYP1A2, CYP2D6 and CYP3A activity) during pregnancy. Am J Obstet Gynecol 192:633–639CrossRefPubMedGoogle Scholar
  82. 82.
    Umbricht DS, Wirshing WC, Wirshing DA et al. (2002) Clinical predictors of response to clozapine treatment in ambulatory patients with schizophrenia. J Clin Psychiatry 63:420–424PubMedGoogle Scholar
  83. 83.
    Volavka J, Czobor P, Cooper TB et al. (2004) Prolactin levels in schizophrenia and schizoaffective disorder patients treated with clozapine, olanzapine, risperidone, or haloperidol. J Clin Psychiatry 65:57–61PubMedGoogle Scholar
  84. 84.
    Wang PS, Walker AM, Tsuang MT et al. (2002) Dopamine antagonists and the development of breast cancer. Arch Gen Psychiatry 59:1147–1154CrossRefPubMedGoogle Scholar
  85. 85.
    Weiss U, Marksteiner J, Kemmler G et al. (2005) Effects of age and sex on olanzapine plasma concentrations. J Clin Psychopharmacol 25:570–574CrossRefPubMedGoogle Scholar
  86. 86.
    Wetterling T, Mussigbrodt HE (1999) Weight gain: side effect of atypical neuroleptics? J Clin Psychopharmacol 19:316–321CrossRefPubMedGoogle Scholar
  87. 87.
    Wilner KD, Demattos SB, Anziano RJ et al. (2000) Ziprasidone and the activity of cytochrome P450 2D6 in healthy extensive metabolizers. Br J Clin Pharmacol 49(Suppl 1):43S–47SGoogle Scholar
  88. 88.
    Wirshing DA, Pierre JM, Marder SR et al. (2002) Sexual side effects of novel antipsychotic medications. Schizophr Res 56:25–30CrossRefPubMedGoogle Scholar
  89. 89.
    Wolbrette D (2002) Gender differences in the proarrhythmic potential of QT-prolonging drugs. Curr Womens Health Rep 2:105–109PubMedGoogle Scholar
  90. 90.
    Wright CE, Sisson TL, Ichhpurani AK et al. (1997) Steady-state pharmacokinetic properties of pramipexole in healthy volunteers. J Clin Pharmacol 37:520–525PubMedGoogle Scholar
  91. 91.
    Zhang ZY, Kaminsky LS (1995) Characterization of Human Cytochromes P450 Involved in Theophylline 8-Hydroxylation. Biochem Pharmacol 50:205–211CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag 2006

Authors and Affiliations

  • W. Aichhorn
    • 2
  • A. B. Whitworth
    • 1
  • E. M. Weiss
    • 2
  • H. Hinterhuber
    • 2
  • J. Marksteiner
    • 2
    Email author
  1. 1.Universitätsklinik für Psychiatrie IParacelsus MPU SalzburgÖsterreich
  2. 2.Abteilung Allgemeine PsychiatrieMedizinische Universität InnsbruckInnsbruckÖsterreich

Personalised recommendations