Advertisement

Der Nervenarzt

, Volume 75, Issue 10, pp 970–983 | Cite as

1H-MR-Spektroskopie

Methoden und Anwendungen in der Diagnostik und Beurteilung operativer und konservativer Therapiestrategien bei Epilepsien
  • T. Hammen
  • H. StefanEmail author
Originalien

Zusammenfassung

In der vorliegenden Arbeit werden die Methoden und Verfahren der klinischen 1H-MR-Spektroskopie aufgeführt und ihre Rolle bei der multimodalen Fokusanalyse in der Epilepsiediagnostik beschrieben. Neben der Möglichkeit der Fokuslateralisation kann die 1H-MRS auch zu der differenzialtypologischen Abgrenzung zwischen mesialer und lateraler (neokortikaler) Temporallappenepilepsie (TLE) beitragen. Des Weiteren wird auf die Anwendungsmöglichkeiten des genannten Verfahrens in der Planung operativer Eingriffe in der Epilepsiechirurgie und im Monitoring von konservativen antiepileptischen Therapien eingegangen.

Schlüsselwörter

1H-MRS Epilepsie Multimodale Fokusanalyse Differenzialtypologische Abgrenzung Postoperatives Outcome Medikamentöses Therapiemonitoring 

1H-MR spectroscopy

Methods and applications in diagnostics and assessment of operative and conservative treatment schedules in epilepsies

Summary

Techniques and methods of clinical 1H-MR spectroscopy are described in this manuscript. The role of 1H-MRS in the multimodal focus analysis of temporal lobe epilepsy (TLE) is illustrated with special respect to focus lateralization and differentiation between mesial and lateral (neocortical) TLE. Additionally the application of 1H-MRS for evaluating postoperative outcome and monitoring conservative antiepileptic treatment schedules is summarized.

Keywords

1H-MRS Epilepsy Multimodal focus localization Differentiation of mesial TLE from lateral (neocortical) TLE Postoperative outcome Therapy monitoring by 1H-MRS 

Literatur

  1. 1.
    Achten E, Boon P, Van De Kerckhove T et al. (1997) Value of single-voxel proton MR spectroscopy in temporal lobe epilepsy. AJNR Am J Neuroradiol 18:1131–1139Google Scholar
  2. 2.
    Brooks WM, Friedman SD, Stidley CA (1999) Reproducibility of 1H-MRS in vivo. Magn Reson Med 41:193–197Google Scholar
  3. 3.
    Cendes F, Andermann F, Dubeau F et al. (1995) Proton magnetic resonance spectroscopic images and MRI volumetric studies for lateralization of temporal lobe epilepsy. Magn Reson Imaging 13:1187–1191Google Scholar
  4. 4.
    Cendes F, Andermann F, Dubeau F et al. (1997) Normalization of neuronal metabolic dysfunction after surgery for temporal lobe epilepsy. Evidence from proton MR spectroscopic imaging. Neurology 49:1525–1533Google Scholar
  5. 5.
    Cendes F, Caramanos Z, Andermann F et al. (1997) Proton magnetic resonance spectroscopic imaging and magnetic resonance imaging volumetry in the lateralization of temporal lobe epilepsy: a series of 100 patients. Ann Neurol 42:737–746Google Scholar
  6. 6.
    Choi CG, Frahm J (1999) Localized proton MRS of the human hippocampus: metabolite concentrations and relaxation times. Magn Reson Med 41:204–207Google Scholar
  7. 7.
    Connelly A, Jackson GD, Duncan JS et al. (1994) Magnetic resonance spectroscopy in temporal lobe epilepsy. Neurology 44:1411–1417Google Scholar
  8. 8.
    Connelly A, Van Paesschen W, Porter DA et al. (1998) Proton magnetic resonance spectroscopy in MRI-negative temporal lobe epilepsy. Neurology 51:61–66Google Scholar
  9. 9.
    Dautry C, Vaufrey F, Brouillet E et al. (2000) Early N-acetylaspartate depletion is a marker of neuronal dysfunction in rats and primates chronically treated with the mitochondrial toxin 3-nitropropionic acid. J Cereb Blood Flow Metab 20:789–799Google Scholar
  10. 10.
    De Stefano N, Matthews PM, Arnold DL (1995) Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 34:721–727Google Scholar
  11. 11.
    Garcia PA, Laxer KD, van der Grond J et al. (1995) Proton magnetic resonance spectroscopic imaging in patients with frontal lobe epilepsy. Ann Neurol 37:279–281Google Scholar
  12. 12.
    Hammen T, Stefan H, Pauli E et al. (2004) 1H-MR spectroscopy: a promising method in distinguishing subgroups in temporal lobe epilepsy? J Neurol Sci (in press)Google Scholar
  13. 13.
    Hugg JW, Laxer KD, Matson GB et al. (1993) Neuron loss localizes human temporal lobe epilepsy by in vivo proton magnetic resonance spectroscopic imaging. Ann Neurol 34:788–794Google Scholar
  14. 14.
    Knowlton RC, Laxer KD, Ende G et al. (1997) Presurgical multimodality neuroimaging in electroencephalographic lateralized temporal lobe epilepsy. Ann Neurol 42:829–837Google Scholar
  15. 15.
    Kuzniecky R, Burgard S, Faught E et al. (1993) Predictive value of magnetic resonance imaging in temporal lobe epilepsy surgery. Arch Neurol 50:65–69Google Scholar
  16. 16.
    Kuzniecky R, Hugg JW, Hetherington H et al. (1998) Relative utility of 1H spectroscopic imaging and hippocampal volumetry in the lateralization of mesial temporal lobe epilepsy. Neurology 51:66–71Google Scholar
  17. 17.
    Kuzniecky R, Hugg J, Hetherington H et al. (1999) Predictive value of 1H MRSI for outcome in temporal lobectomy. Neurology 53:694–698Google Scholar
  18. 18.
    Li LM, Caramanos Z, Cendes F et al. (2000) Lateralization of temporal lobe epilepsy (TLE) and discrimination of TLE from extra-TLE using pattern analysis of magnetic resonance spectroscopic and volumetric data. Epilepsia 41:832–842Google Scholar
  19. 19.
    Lundbom N, Gaily E, Vuori K et al. (2001) Proton spectroscopic imaging shows abnormalities in glial and neuronal cell pools in frontal lobe epilepsy. Epilepsia 42:1507–1514Google Scholar
  20. 20.
    Margerison JH, Corsellis JA (1966) Epilepsy and the temporal lobes. A clinical, electroencephalographic and neuropathological study of the brain in epilepsy, with particular reference to the temporal lobes. Brain 89:499–530Google Scholar
  21. 21.
    Mory SB, Li LM, Guerreiro CA et al. (2003) Thalamic dysfunction in juvenile myoclonic epilepsy: a proton MRS study. Epilepsia 44:1402–1405Google Scholar
  22. 22.
    Mueller SG, Weber OM, Duc CO et al. (2001) Effects of vigabatrin on brain GABA+/CR signals in patients with epilepsy monitored by 1H-NMR-spectroscopy: responder characteristics. Epilepsia 42:29–40Google Scholar
  23. 23.
    Mueller SG, Weber OM, Duc CO et al. (2003) Effects of vigabatrin on brain GABA+/Cr signals in focus-distant and focus-near brain regions monitored by 1H-NMR spectroscopy. Eur J Neurol 10:45–52Google Scholar
  24. 24.
    Nakano M, Ueda H, Li JY et al. (1998) Measurement of regional N-acetylaspartate after transient global ischemia in gerbils with and without ischemic tolerance: an index of neuronal survival. Ann Neurol 44:334–340Google Scholar
  25. 25.
    Ng TC, Comair YG, Xue M et al. (1994) Temporal lobe epilepsy: presurgical localization with proton chemical shift imaging. Radiology 193:465–472Google Scholar
  26. 26.
    Petroff OA, Behar KL, Mattson RH et al. (1996) Human brain γ-aminobutyric acid levels and seizure control following initiation of vigabatrin therapy. J Neurochem 67:2399–2404Google Scholar
  27. 27.
    Petroff OA, Rothman DL, Behar KL et al. (1996) Human brain GABA levels rise rapidly after initiation of vigabatrin therapy. Neurology 47:1567–1571Google Scholar
  28. 28.
    Petroff OA, Rothman DL, Behar KL et al. (1996) Human brain GABA levels rise after initiation of vigabatrin therapy but fail to rise further with increasing dose. Neurology 46:1459–1463Google Scholar
  29. 29.
    Petroff OA, Rothman DL, Behar KL et al. (1996) Low brain GABA level is associated with poor seizure control. Ann Neurol 40:908–911Google Scholar
  30. 30.
    Petroff OA, Hyder F, Rothman DL et al. (2000) Effects of gabapentin on brain GABA, homocarnosine, and pyrrolidinone in epilepsy patients. Epilepsia 41:675–680Google Scholar
  31. 31.
    Petroff OA, Hyder F, Rothman DL et al. (2001) Topiramate rapidly raises brain GABA in epilepsy patients. Epilepsia 42:543–548Google Scholar
  32. 32.
    Savic I, Osterman Y, Helms G (2004) MRS shows syndrome differentiated metabolite changes in human-generalized epilepsies. Neuroimage 21:163–172Google Scholar
  33. 33.
    Serles W, Li LM, Antel SB et al. (2001) Time course of postoperative recovery of N-acetyl-aspartate in temporal lobe epilepsy. Epilepsia 42:190–197Google Scholar
  34. 34.
    Simister RJ, McLean MA, Barker GJ et al. (2003) Proton MRS reveals frontal lobe metabolite abnormalities in idiopathic generalized epilepsy. Neurology 61:897–902Google Scholar
  35. 35.
    Stanley JA, Cendes F, Dubeau F et al. (1998) Proton magnetic resonance spectroscopic imaging in patients with extratemporal epilepsy. Epilepsia 39:267–273Google Scholar
  36. 36.
    Stefan H (2003) Ictal signs—cerebral localization an propagation. Nervenarzt 74:527–536Google Scholar
  37. 37.
    Stefan H, Pauli E, Eberhardt KE et al. (2000) MRI spectroscopy, T2 relaxometry, and postoperative prognosis in cryptogenic temporal lobe epilepsy. Nervenarzt 71:282–287Google Scholar
  38. 38.
    Suhy J, Laxer KD, Capizzano AA et al. (2002) 1H MRSI predicts surgical outcome in MRI-negative temporal lobe epilepsy. Neurology 58:821–823Google Scholar
  39. 39.
    Urenjak J, Williams SR, Gadian DG et al. (1993) Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neurosci 13:981–989Google Scholar
  40. 40.
    Vermathen P, Ende G, Laxer KD et al. (1997) Hippocampal N-acetylaspartate in neocortical epilepsy and mesial temporal lobe epilepsy. Ann Neurol 42:194–199Google Scholar
  41. 41.
    Woermann FG, McLean MA, Bartlett PA et al. (1999) Short echo time single-voxel 1H magnetic resonance spectroscopy in magnetic resonance imaging-negative temporal lobe epilepsy: different biochemical profile compared with hippocampal sclerosis. Ann Neurol 45:369–376Google Scholar
  42. 42.
    Woermann FG, McLean MA, Bartlett PA et al. (2001) Quantitative short echo time proton magnetic resonance spectroscopic imaging study of malformations of cortical development causing epilepsy. Brain 124:427–436Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  1. 1.Neurologische Klinik mit Poliklinik, Zentrum EpilepsieUniversität Erlangen-NürnbergErlangen
  2. 2.Neurologische Klinik mit Poliklinik, Zentrum Epilepsie ErlangenUniversität Erlangen-NürnbergErlangenDeutschland

Personalised recommendations