Advertisement

Der Nervenarzt

, Volume 75, Issue 8, pp 755–762 | Cite as

Supratentorielle Kavernome und epileptische Anfälle

Gibt es Prädiktoren für postoperative Anfallskontrolle?
  • H. StefanEmail author
  • J. Walter
  • F. Kerling
  • I. Blümcke
  • M. Buchfelder
Originalien

Zusammenfassung

Supratentorielle Kavernome sind häufig mit symptomatischen Epilepsien assoziiert. Das Ziel der chirurgischen Behandlung besteht darin, die Epilepsie zu kontrollieren und außerdem die potenzielle Blutungsquelle zu eliminieren. In der vorliegenden Untersuchung wurde in einer Pilotstudie nach Prädiktoren für eine postoperative Anfallsfreiheit gesucht. Hierbei wurden zur Beurteilung des Therapieerfolgs 3 Klassifikationsschemata eingesetzt. Dreißig Patienten wurden aufgrund der präoperativen Diagnostik einschließlich intraoperativer Elektrokortikographie maßgeschneiderten Resektionen unterzogen und der postoperative Verlauf (durchschnittlich 4 Jahre) analysiert. Eine Läsionektomie, erweiterte Läsionektomie und modifizierte Lappenresektion wurden so durchgeführt, dass der gliotische Randsaum eindeutig operativ entfernt wurde. Ergänzende Gewebsresektionen wurden elektrophysiologisch definiert. Von den Patienten wurden 53,3% komplett anfallsfrei (Engel I), ein weiterer Patient hatte lediglich gelegentlich isolierte Auren. Weitere 8 Patienten (26,7%) wiesen eine erhebliche Reduktion der Anfallsfrequenz und Schwere der Anfälle auf. Die postoperative Anfallskontrolle war nicht mit dem Operationstyp assoziiert. Als prognostische Faktoren wurden frühe operative Interventionen (91,7% der Patienten, die innerhalb von 2 Jahren nach Erstmanifestation der Anfälle operiert wurden, wurden anfallsfrei) und das Vorliegen singulärer oder multipler Kavernome (keiner der Patienten mit multiplen Kavernomen wurde anfallsfrei) identifiziert. Patienten mit präoperativ festgestelltem unifokalem Anfallsbeginn wiesen eine gute Anfallskontrolle im Vergleich zu solchen Patienten mit bilateralem oder multifokalem Anfallsbeginn auf.

Schlüsselwörter

Kavernome Anfälle Epilepsien Therapiestrategien 

Supratentorial cavernoma and epileptic seizures: predictors in postoperative control?

Abstract

For cavernous haemangiomas, it is the aim of surgical treatment to control epilepsy and eliminate potential sources of intracerebral haematomas. In the following investigation, it was attempted to find indicators for seizure freedom after surgery. Success of therapy was assessed according to three patterns of classification. Thirty patients underwent tailored resection based on findings from preoperative investigations and intraoperative electrocorticography. Follow-up averaged 4 years. Lesionectomy, extended lesionectomy, and modified lobe resection were carried out in 13, 11, and six patients, respectively. For all procedures, including microsurgical lesionectomy, the firm gliotic layer unequivocally differed in colour and consistency from normal brain and was removed. Further tissue resection was carried out only if the electrocortical course suggested persistent spike activity around the resection cavity or if presurgical MRI evaluation (e.g. hippocampal atrophy) or electrophysiology also pointed to pathology distant from the lesion. Of the patients, 53.3% became completely seizure-free (Engel I), and one additional patient had only occasional isolated auras. Dramatic reductions in seizure frequency and severity were exhibited by 26.7%. Outcome in respect to seizure control was not associated with resection procedure, comparing pure lesionectomy with lesionectomy plus cortectomy. In the group of patients with epilepsy surgery, those with hippocampectomy had significantly better outcome than those without. Important prognostic factors were early operation after seizure manifestation (91.7% operated upon within 2 years of seizure onset became seizure-free). Another prognostic factor was unifocal seizure onset (bilateral or multifocal seizure onset was found in care of the ten patients with unfavourable outcome). None of the four patients harbouring multiple cavernomas became seizure-free after resection of one lesion, which was believed to be mostly attributable to the epileptic focus that was removed.

Keywords

Cavernomas Seizures Epilepsies Therapeutic strategies 

Literaturverzeichnis

  1. 1.
    Acciarri N, Padovani R, Giulioni M et al. (1993) Intracranial and orbital cavernous angiomas: a review of 74 surgical cases. Br J Neurosurg 7:529–539PubMedGoogle Scholar
  2. 2.
    Acciarri N, Giulioni M, Padovani R et al. (1995) Surgical management of cerebral cavernous angiomas causing epilepsy. J Neurosurg Sci 39:13–20PubMedGoogle Scholar
  3. 3.
    Brunereau L, Houtteville JP, Labauge P et al. (2000) Familial form of intracranial cavernous angioma: MR imaging findings in 51 families. Radiology 214:209–216PubMedGoogle Scholar
  4. 4.
    Cappabianca P, Alfieri A, Cirillo S et al. (1997) Supratentorial cavernous malformations and epilepsy: seizure outcome after lesionectomy on a series of 35 patients. Clinical Neurol Neurosurg 99:179–183CrossRefGoogle Scholar
  5. 5.
    Cascino GD, Jack CR Jr, Parisi JE et al. (1993) Operative strategy in patients with MRI-identified dual pathology and temporal lobe epilepsy. Epilepsy Res 14:175–182PubMedGoogle Scholar
  6. 6.
    Churchyard A, Khangure M, Grainger K (1992) Cerebral cavernous angioma: a potentially benign condition? Successful treatment in 16 cases. J Neurol Neurosurg Psych 55:1040–1045Google Scholar
  7. 7.
    Cohen DS, Zubay GP, Goodman RR (1995) Seizure outcome after lesionectomy for cavernous malformations. J Neurosurg 83:237–242PubMedGoogle Scholar
  8. 8.
    Convers P, Bierme T, Ryvlin P et al. (1990) Contribution of magnetic resonance imaging in 100 cases of refractory partial epilepsy with normal CT scans (French). Rev Neurol (Paris) 146:330–337Google Scholar
  9. 9.
    Del Curling OD Jr, Kelly DL Jr, Elster AD et al. (1991) An analysis of the natural history of cavernous angiomas. J Neurosurgery 75:702–708Google Scholar
  10. 10.
    Engel J Jr, Van Ness PC, Rasmussen TB et al. (1993) Outcome with respect to epileptic seizures. In: Engel J Jr (ed) Surgical treatment of the epilepsies. Raven Press, New York, pp 609–621Google Scholar
  11. 11.
    Folkersma H, Mooij JJA (2001) Follow-up of 13 patients with surgical treatment of cerebral cavernous malformations: effect on epilepsy and patient disability. Clin Neurol Neurosurg 103:67–71CrossRefPubMedGoogle Scholar
  12. 12.
    Giombini S, Morello G (1978) Cavernous angiomas of the brain. Account of 14 personal cases and review of the literature. Acta Neurochir 40:61–82Google Scholar
  13. 13.
    Kattapong VJ, Hart BL, Davis LE (1995) Familial cerebral cavernous angiomas: clinical and radiologic studies. Neurology 45:492–497PubMedGoogle Scholar
  14. 14.
    Kim DS, Park YG, Choi JU et al. (1997) An analysis of the natural history of cavernous malformations. Surg Neurol 48:9–18CrossRefPubMedGoogle Scholar
  15. 15.
    Kraemer DL, Awad IA (1994) Vascular malformations and epilepsy: clinical considerations and basic mechanisms. Epilepsia 35:30–43Google Scholar
  16. 16.
    Kuzniecky R, de la Sayette V, Ethier R et al. (1987) Magnetic resonance imaging in temporal lobe epilepsy: pathological correlations. Ann Neurol 22:341–347PubMedGoogle Scholar
  17. 17.
    Martin NA, Stein BM, Wilson CB (1984) Arteriovenous malformations of the posterior fossa. In: Wilson CB, Stein BM (eds) Intracranial arteriovenous malformations. Williams and Wilkins, Baltimore, pp 209–221Google Scholar
  18. 18.
    Massa-Micon B, Luparello V, Bergui M et al. (2000) De novo cavernoma case report and review of literature. Surg Neurol 53:484–487CrossRefPubMedGoogle Scholar
  19. 19.
    Moran NF, Fish DR, Kendall BE et al. (1999) Supratentorial cavernous haemangiomas and epilepsy: a review of the literature and case series. J Neurol Neurosurg Psychiatry 66:561–568PubMedGoogle Scholar
  20. 20.
    Morell F (1985) Secondary epileptogenesis in man. Arch Neurol 42:318–335PubMedGoogle Scholar
  21. 21.
    Porter P, Willinsky R, Harper W et al. (1997) Cerebral cavernous malformations: natural history and prognosis after clinical deterioration with or without hemorrhage. J Neurosurg 87:190–197PubMedGoogle Scholar
  22. 22.
    Pozzati E, Padovani R, Morrone B et al. (1980) Cerebral cavernous angiomas in children. J Neurosurg 53:826–832PubMedGoogle Scholar
  23. 23.
    Pozzati E, Acciarri N, Tognetti F et al. (1996) Growth, subsequent bleeding, and de novo appearance of cerebral cavernous angiomas. Neurosurgery 38:662–670PubMedGoogle Scholar
  24. 24.
    Robinson JR Jr, Awad IA (1993) Clinical spectrum and natural course. In: Awad IA, Barrow DL (eds) Cavernous malformations. American Association of Neurological Surgeons, Baltimore, pp 25–36Google Scholar
  25. 25.
    Robinson JR Jr, Awad IA, Little JR (1991) The natural history of the cavernous angiomas. J Neurosurg 75:709–714PubMedGoogle Scholar
  26. 26.
    Robinson JR Jr, Awad IA, Magdinec M et al. (1993) Factors predisposing to clinical disability in patients with cavernous malformations of the brain. Neurosurgery 32:730–736PubMedGoogle Scholar
  27. 27.
    Satoh H, Matsui K (1997) Electrical and mechanical modulations by oxygen-derived free radical generating systems in guinea pig heart muscles. J Pharm Pharmacol 49:505–510PubMedGoogle Scholar
  28. 28.
    Siegel AM, Roberts DW, Harbaugh RE et al. (2000) Pure lesionectomy versus tailored epilepsy surgery in treatment of cavernous malformations presenting with epilepsy. Neurosurg Rev 23:80–83CrossRefPubMedGoogle Scholar
  29. 29.
    Stefan H (1996) Internationale Klassifikation epileptischer Anfälle und Syndrome: Rück- und Ausblick. Epilepsie-Blätter 9:35–42Google Scholar
  30. 30.
    Stefan H, Scheler G, Hummel C, Walter J, Romstöcke J, Buchfelder M, Blümcke I (2004) Magnetencephalography(MEG) predicts focal epileptogenesis in cavernomas. J Neurol Neurosurg Psychiatry (in press)PubMedGoogle Scholar
  31. 31.
    Tymiansky M, Tator CH (1996) Normal and abnormal calcium homeostasis in neurons: a basis for the pathophysiology of traumatic and ischemic central nervous system injury. Neurosurgery 38:1176–1195PubMedGoogle Scholar
  32. 32.
    Vajkoczy P, Krakow K, Pohlmann-Eden B et al. (1998) Modified approach for the selective treatment of temporal lobe epilepsy: transsylvanian-transcisternal mesial en bloc resection. J Neurosurg 88:855–862PubMedGoogle Scholar
  33. 33.
    Vaquero J, Salazar J, Martinez R et al. (1987) Cavernomas of the central nervous system: clinical syndromes, CT scan diagnosis and prognosis after surgical treatment in 25 cases. Acta Neurochir 85:29–33Google Scholar
  34. 34.
    Vickrey BG, Hays RD, Engel J Jr et al. (1995) Outcome assessment for epilepsy surgery: the impact of measuring health-related quality of life. Ann Neurol 37:158–166PubMedGoogle Scholar
  35. 35.
    Volterra A, Trotti D, Tromba C et al. (1994) Glutamate uptake inhibition by oxygen-free radicals in rat cortical astrocytes. J Neurol Sci 14:2924–2932Google Scholar
  36. 36.
    Wieser HG, Blume WT, Fish D et al. (2001) Commission on neurosurgery of the International League Against Epilepsy (ILAE) 1997–2001. Proposal for a new classification of outcome with respect to epileptic seizures following epilepsy surgery. Epilepsia 42:282–286PubMedGoogle Scholar
  37. 37.
    Zabramski JM, Wascher T, Spetzler R et al. (1994) The natural history of familial cavernous malformations: results of an ongoing study. J Neurosurg 80:422–432PubMedGoogle Scholar
  38. 38.
    Unterberger I, Trinka E, Luef G, Ortler M, Bauer G (2003) Cavernome und Epilepsie. Z Epileptol 16:1-6 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • H. Stefan
    • 1
    Email author
  • J. Walter
    • 1
  • F. Kerling
    • 1
  • I. Blümcke
    • 2
  • M. Buchfelder
    • 3
  1. 1.Neurologische Klinik—Zentrum Epilepsie (ZEE)— Universität Erlangen-NürnbergErlangen
  2. 2.Neuropathologisches Institut Universität Erlangen-NürnbergErlangen
  3. 3.Neurochirurgische Klinik—Zentrum Epilepsie (ZEE)— Universität Erlangen-NürnbergErlangen

Personalised recommendations