The Science of Nature

, 106:27 | Cite as

Soft-bodied fossils from the upper Valongo Formation (Middle Ordovician: Dapingian-Darriwilian) of northern Portugal

  • Julien KimmigEmail author
  • Helena Couto
  • Wade W. Leibach
  • Bruce S. Lieberman
Original Paper


Soft-bodied preservation is common in the Cambrian but comparatively rare in the Ordovician. Here, a new deposit preserving soft-bodied fossils is reported from the Middle Ordovician (Dapingian-Darriwilian) upper Valongo Formation of northern Portugal. The deposit contains the first known occurrences of soft-bodied fossils from the Middle Ordovician (Dapingian-Darriwilian) of Portugal and is the first Ordovician example of soft-tissue preservation involving carbonaceous films from the Iberian Peninsula. It also represents the lone deposit of soft-bodied fossils from the Middle Ordovician of northern Gondwana. Thus temporally, it lies between the exceptional deposits of the Lower Ordovician of Fezouata (Morocco) and the Upper Ordovician of the Soom Shale (South Africa); it also serves as a biogeographic link between these and the various Ordovician soft-bodied deposits in Laurentia. The soft-bodied fossils come from the deep-water slates of the upper part of the Valongo Formation and include a discoidal fossil questionably referable to Patanacta, wiwaxiid sclerites, and a possible pseudoarctolepid arthropod.


Soft-tissue preservation Discoidal fossils Wiwaxia Bivalved arthropod Ordovician Portugal 



We would like to thank P. Thapa for his assistance using the SEM. P. Van Roy is thanked for his comments on a previous version of the manuscript. The editor, Allison Daley, William Ausich, and an anonymous referee are thanked for their comments. This is a contribution to ICT, Institute of Earth Sciences, Department of Geosciences, Environment and Spatial Planning, University of Porto, and to the IGCP Project 653.

Supplementary material

114_2019_1623_MOESM1_ESM.xls (26 kb)
ESM 1 Table of Ordovician deposits with documented soft-tissue preservation, organized by age. (XLS 25 kb)
114_2019_1623_MOESM2_ESM.xlsx (11 kb)
ESM 2 Table of Ordovician disc-shaped soft-bodied fossils. (XLSX 10 kb)
114_2019_1623_Fig6_ESM.png (2.8 mb)

EDX spectrum and Elemental maps of Patanacta? sp. indet. (FCUP/DGAOT 3SPC). a Upper right of the specimen. b Center of the specimen, obscured by relief change. c The matrix. d Right of the center of the specimen. Locations based on Fig. 3. Scale bars are 1 mm. (PNG 2841 kb)

114_2019_1623_MOESM3_ESM.tif (25.8 mb)
High resolution image (TIF 26405 kb)
114_2019_1623_Fig7_ESM.png (3.1 mb)

EDX spectrum and Elemental maps of the probable wiwaxiid sclerites (FCUP/DGAOT 5SPC). a Thin end of the right sclerite. b Wide end of the right sclerites. c The matrix. Locations based on Fig. 4. Scale bars are 1 mm. (PNG 3144 kb)

114_2019_1623_MOESM4_ESM.tif (25.7 mb)
High resolution image (TIF 26357 kb)


  1. Aldridge RJ, Theron JN, Gabbott SE (1994) The Soom Shale: a unique Ordovician fossil horizon in South Africa. Geol Today 10:218–221Google Scholar
  2. Alessandrello A, Bracchi G (2003) Eldonia berbera n. sp., a new species of the enigmatic genus Eldonia Walcott, 1911 from the Rawtheyan (Upper Ordovician) of Anti-Atlas (Erfoud, Tafilalt, Morocco). Atti della società italiana di scienze naturali e del museo civico di storia naturale di Milano 144:337–358Google Scholar
  3. Allison PA, Briggs DEG (1993) Paleolatitudinal sampling bias, Phanerozoic species diversity, and the end-Permian extinction. Geology 21:65–68Google Scholar
  4. Aris MJ, Palomo M (2014) Primer registro de una fauna Ordovícica ‘tipo Burgess Shale’ en Argentina y Sudamérica. XIX Congreso Geológico Argentino, Córdoba. Junio 2014, Asociación Geológica Argentina, Buenos Aires, Abstracts, S2–S4Google Scholar
  5. Aris MJ, Corronca JA, Quinteros S, Pardo PL (2017) A new marrellomorph euarthropod from the Early Ordovician of Argentina. Acta Palaeontol Pol 62:1–8Google Scholar
  6. Ausich WI, Sá A, Gutiérrez-Marco JC (2007) New and revised occurrences of Ordovician crinoids from southwestern Europe. J Paleontol 81:1374–1383Google Scholar
  7. Babin C, Becq-Giraudon JF, Lardeux H, Gutiérrez-Marco JC (1996) Présence de Trocholites (Cephalopoda, Nautiloidea) dans L’Ordovicien du Massif Armoricain et du Portugal. Bulletin de la Société des Sciences de l’Ouest de la France, nouvelle série 18:105–112Google Scholar
  8. Baliníski A, Sun Y (2013) Preservation of soft tissues in an Ordovician linguloid brachiopod from China. Acta Palaeontol Pol 58:115–120Google Scholar
  9. Baliński A, Sun Y, Dzik J (2014) Probable advanced hydroid from the Early Ordovician of China. Palaeontol Z 88:1–10Google Scholar
  10. Barrois C (1891) Mémoire sur la Faune du Grès armoricain. Annales de la Société Géologique du Nord 19:134–237Google Scholar
  11. Botting JP, Muir LA, Jordan N, Upton C (2015) An Ordovician variation on Burgess Shale-type biotas. Sci Rep 5(9947):1–11. CrossRefGoogle Scholar
  12. Briggs DEG (2003) The role of decay and mineralization in the preservation of soft-bodied fossils. Annu Rev Earth Pl Sc 31:275–301Google Scholar
  13. Briggs DEG, Fortey RAF (2005) Wonderful strife: systematics, stem groups, and the phylogenetic signal of the Cambrian radiation. Paleobiology 31:94–112Google Scholar
  14. Briggs DEG, Bottrell SH, Raiswell R (1991) Pyritization of soft-bodied fossils: Beecher’s Trilobite Bed, Upper Ordovician, New York State. Geology 19:1221–1224Google Scholar
  15. Briggs DEG, Sutton MD, Siveter DJ, Siveter DJ (2004) A new phyllocarid (Crustacea: Malacostraca) from the Silurian Fossil-Lagerstätte of Herefordshire, UK. Proc R Soc Lond B 271:131–138Google Scholar
  16. Briggs DEG, Liu HP, McKay RM, Witzke BJ (2018) The Winneshiek biota: exceptionally well-preserved fossils in a Middle Ordovician impact crater. J Geol Soc London 175:865–874. CrossRefGoogle Scholar
  17. Brooks HK, Caster KE (1956) Pseudoarctolepis sharpi n. gen. n. sp. (Phyllocarida) from the Wheeler Shale (Middle Cambrian) of Utah. J Paleontol 30:9–14Google Scholar
  18. Budil P, Fatka O, Bruthansová J (2003) Trilobite fauna of the Šárka Formation at Praha–Červeny vrch Hill (Ordovician, Barrandian area, Czech Republic). Bull Geosci 78:113–117Google Scholar
  19. Butterfield NJ (1990) Organic preservation of non-mineralizing organisms and the taphonomy of the Burgess Shale. Paleobiology 16:272–286Google Scholar
  20. Butterfield NJ (1995) Secular distribution of Burgess-Shale-type preservation. Lethaia 28:1–13Google Scholar
  21. Caron J-B, Conway Morris S, Shu D (2010) Tentaculate fossils from the Cambrian of Canada (British Columbia) and China (Yunnan) interpreted as primitive deuterostomes. PLoS One 5:1–13Google Scholar
  22. Cai Y, Schiffbauer JD, Hua H, Xiao S (2012) Preservational modes in the Ediacaran Gaojiashan Lagerstätte: pyritization, aluminosilicification, and carbonaceous compression. Palaeogeograp Palaeoclimatol Palaeoecol 326-328:109117Google Scholar
  23. Cartwright P, Halgedahl SL, Hendricks JR, Jarrard RD, Marques AC, Collins AG, Lieberman BS (2007) Exceptionally preserved jellyfishes from the Middle Cambrian. PLoS One 2:e1121. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Cherns L (1994) A medusoid from the Late Ordovician or Early Silurian of Jamtland, Central Sweden. J Paleontol 68:716–721Google Scholar
  25. Chlupáč I (1999) Some problematical arthropods from the Upper Ordovician Letná Formation of Bohemia. J Czech Geol Soc 44:79–92Google Scholar
  26. Cloud P (1973) Pseudofossils: a plea for caution. Geology 1:123–127Google Scholar
  27. Conway Morris S (1985) Cambrian Lagerstätten: Their distribution and significance. Philo Trans Royal Soc Ser B 311:49e65Google Scholar
  28. Conway Morris S (1989) The persistence of Burgess Shale-type faunas: implications for the evolution of deeper-water faunas. Trans R Soc Edinb Earth Sci 80:271–283Google Scholar
  29. Conway Morris S, Selden PA, Gunther G, Jamison PG (2015) New records of Burgess Shale-type taxa from the middle Cambrian of Utah. J Paleontol 89:411–423Google Scholar
  30. Couto H (1993) As mineralizações de Sb-Au da região Dúrico-Beirã. 2 Vols. (Vol. Texto; Vol. Anexos: 32 Estampas e 7 Mapas). Unpublished PhD thesis, University of Porto:607 ppGoogle Scholar
  31. Couto H (2013) The Ordovician of Valongo Anticline (Northern Portugal): state of art. Geology, Exploration and Mining, SGEM2013 Conference Proceedings 1:203–208Google Scholar
  32. Couto H, Gutiérrez-Marco JC (1999) Nota sobre algunos Diplo porita (Echinodermata) de las pizarras de la Formación Valongo (Ordovicico Medio, Portugal). Temas Geológico-Mineros ITGE 26:541–545Google Scholar
  33. Couto H, Gutiérrez-Marco JC (2000) Alguns fósseis raros ou pouco conhecidos na Formação de Valongo (Ordovícico Médio, norte de Portugal). In: Díez JB, Balbino AC (eds) I Congresso Ibérico de Paleontologia/XV Jornadas de la Sociedad Española de Paleontología, Évora, pp 191–192Google Scholar
  34. Couto H, Roger G (2017) Palaeozoic Magmatism Associated with Gold-Antimony-Tin-Tungsten-Lead-Zinc and Silver Mineralization in the Neighbouring of Porto, Northern Portugal. IOP Conf Ser: Earth Environ Sci 95:022054Google Scholar
  35. Couto H, Piçarra JM, Gutiérrez-Marco JC (1997) El Paleozoico del Anticlinal de Valongo (Portugal) In: Grandal d'Anglade A, Gutiérrez-Marco JC, Santos Fidalgo L (eds) Comunicaciones XIII Jornadas de Paleontología y V Reunón Internacional PIGC 351. A Coruña, Libro de Resúmenes y Excursiones. Sociedad Española de Paleontologia, Madrid, pp 270–290Google Scholar
  36. Couto H, Knight J, Lourenço A (2013) Late Ordovician ice-marginal processes and sea-level change from the North Gondwana platform: evidence from the Valongo Anticline (northern Portugal). Palaeogeograph Palaeoclimat Palaeocl 375:1–15Google Scholar
  37. Couto H, Knight J, Lourenço A (2014) Rifting at the Cambrian–Ordovician transition in northwestern Portugal. Comunicações Geológicas 101 Especial I:251–254Google Scholar
  38. Curtis MLK (1961) Ordovician trilobites from the Valongo area, Portugal. Cheiruridae, Pliomeridae and Dionididae. Boletim da Sociedade Geológica de Portugal 14:1–16Google Scholar
  39. Cuvier G (1797) Tableau élémentaire de l’histoire naturelle des animaux. Baudouin, Paris, 770 pGoogle Scholar
  40. Daley AC, Antcliffe JB, Drage HB, Pates S (2018) Early fossil record of Euarthropoda and the Cambrian explosion. PNAS (USA) 115:5323–5331Google Scholar
  41. Delgado JFN (1892) Contributions à l’étude des terrains anciens du Portugal. Communicações da Commissão dos Trabalhos Geologicos de Portugal 2:216–228Google Scholar
  42. Delgado JFN (1897) Fauna Silúrica de Portugal. Novas observações acerca de Lichas (Uralichas) Ribeiroi. Commissão dos Trabalhos Geologicos de Portugal: 1-34Google Scholar
  43. Delgado JFN (1908) Système Silurique du Portugal. Étude de stratigraphie paléontologique Mémoire de la Commission du Service Géologique du Portugal:1–245Google Scholar
  44. Farrell ÚC, Martin MJ, Hagadorn JW, Whiteley T, Briggs DEG (2009) Beyond Beecher’s Trilobite Bed: widespread pyritization of soft tissues in the Late Ordovician Taconic foreland basin. Geology 37:907–910Google Scholar
  45. Fedonkin MA (1981) Belomorskaya biota venda (The Vendian White Sea biota). Trudy Geological Institute, Academy Nauk SSSR 342:1–100Google Scholar
  46. Fryer G, Stanley GD Jr (2004) A Silurian porpitoid hydrozoan from Cumbria, England, and a note on porpitoid relationships. Palaeontology 47:1109–1119. CrossRefGoogle Scholar
  47. Gabbott SE (1998) Taphonomy of the Ordovician Soom Shale Lagerstätte: an example of soft tissue preservation in clay minerals. Palaeontology 41:631–667Google Scholar
  48. Gabbott SE, Zalasiewicz J, Collins D (2008) Sedimentation of the phyllopod bed within the Cambrian Burgess Shale Formation of British Columbia. J Geol Soc Lond 165:307–318Google Scholar
  49. Gabbott SE, Browning C, Theron JN, Whittle RJ (2017) The late Ordovician Soom Shale Lagerstätte: an extraordinary post-glacial fossil and sedimentary record. J Geol Soc Lond 174:1–9Google Scholar
  50. Gaines RR (2014) Burgess Shale-type preservation and its distribution in space and time. In M. Laflamme, J.D. Schiffbauer, and S.A.F. Darroch (eds.), Reading and writing of the fossil record: preservational pathways to exceptional fossilization. Paleontol Soc Paps 20:123–146Google Scholar
  51. Gaines RR, Hammarlund EU, Hou X, Qi C, Gabbott SE, Zhao Y, Peng J, Canfield DE (2012a) Mechanism for Burgess Shale-type preservation. PNAS (USA) 109:5180–5184Google Scholar
  52. Gaines RR, Droser ML, Orr PJ, Garson D, Hammarlund E, Qi C, Canfield DE (2012b) Burgess Shale-type biotas were not entirely burrowed away. Geology 40:283–286Google Scholar
  53. García-Bellido DC, Paterson JR, Edgecombe GD, Jago JB, Gehling JG, Lee MSY (2009) The bivalved arthropods Isoxys and Tuzoia with soft-part preservation from the lower Cambrian Emu Bay Shale Lagerstätte (Kangaroo Island, Australia). Palaeontology 52:1221–1241Google Scholar
  54. Gehling JG, Narbonne GM, Anderson MM (2000) The first named Ediacaran body fossil, Aspidella terranovica. Palaeontology 43:427–456. CrossRefGoogle Scholar
  55. Glaessner MF (1971) The genus Conomedusites Glaessner and Wade and the diversification of the Cnidaria. Palaeontol Z 45:1–17. CrossRefGoogle Scholar
  56. Gutiérrez-Marco JC, García-Bellido DC (2015) Micrometric detail in palaeoscolecid worms from Late Ordovician sandstones of the Tafilalt Konservat-Lagerstätte, Morocco. Gondwana Res 28:875–881Google Scholar
  57. Gutiérrez-Marco JC, Rábano I, Couto H, Piçarra JM (2000) Plumulítidos (Machaeridia) de la Formación Valongo (Ordovícico Médio, Portugal). Livro de resumos do I Congresso Ibérico de Paleontologia/XVI Jornadas de la Sociedad Española de Paleontología:193–194Google Scholar
  58. Hagadorn JW, Dott RH Jr, Damrow D (2002) Stranded on a late Cambrian shoreline: medusae from central Wisconsin. Geology 30:147–150.<0147:SOALCS>2.0.CO;2 CrossRefGoogle Scholar
  59. Hall J (1847) Paleontology of New York, Vol. 1: natural history of New York, part 6. New York: Albany, 1–338Google Scholar
  60. Hearing TW, Legg DA, Botting JP, Muir LA, McDermott P, Faulkner S, Taylor AC, Brasier MD (2016) Surival of burgess Shale-type animals in a Middle Ordovician deep-water setting. J Geol Soc Lond 173:628–633Google Scholar
  61. Hofmann HJ, Mountjoy EW, Teitz MW (1991) Ediacaran fossils and dubiofossils, Miette Group of Mount Fitzwilliam area, British Columbia. Can J Earth Sci 28:1541–1552. CrossRefGoogle Scholar
  62. Jago JB, Gatehouse CG, Powell CMA, Casey T, Alexander EM (2010) The Dawson Hill member of the Grindstone Range Sandstone in the Flinders Ranges, South Australia. Trans Roy Soc S Austral 134:115–124Google Scholar
  63. Jago JB, Gehling JG, Paterson JR, Brock GA, Zang W (2012) Cambrian stratigraphy and biostratigraphy of the Flinders Ranges and the north coast of Kangaroo Island, South Australia. Episodes 35:247–255Google Scholar
  64. Johnson H, Fox SK (1968) Dipleurozoa from the Lower Silurian of North America. Science 162:119–120PubMedGoogle Scholar
  65. Kimmig J, Pratt BR (2015) Soft-bodied biota from the middle Cambrian (Drumian) Rockslide Formation, Mackenzie Mountains, northwestern Canada. J Paleontol 89:51–71Google Scholar
  66. Kimmig J, Pratt BR (2016) Taphonomy of the middle Cambrian (Drumian) ravens Throat River Lagerstätte, Rockslide Formation, northwestern Canada. Lethaia 49:150–169Google Scholar
  67. Kimmig J, Pratt BR (2018) Coprolites in the ravens throat river lagerstätte of northwestern Canada: implications for the middle Cambrian food web. Palaios 33:125–140. CrossRefGoogle Scholar
  68. Kimmig J, Strotz LC (2017) Coprolites in middle Cambrian (Series 2–3) Burgess Shale-type deposits of Nevada and Utah and their ecological implications. Bull Geosci 92:297–309Google Scholar
  69. Kimmig J, Meyer RC, Lieberman BS (2018) Herpetogaster from the early Cambrian of Nevada (Series 2, Stage 4) and its implications for the evolution of deuterostomes. Geol Mag 156:172–178. CrossRefGoogle Scholar
  70. Kimmig J, Strotz LC, Kimmig SR, Egenhoff SO, Lieberman BS (2019) The Spence Shale Lagerstätte: an important window into Cambrian biodiversity. J Geol Soc London.
  71. Kirkland CL, MacGabhann BA, Kirkland BL, Daly JS (2016) Cryptic disc structures resembling Ediacaran discoidal fossils from the Lower Silurian Hellefjord Schist, Arctic Norway. PLoS One 11:e0164071. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Lamsdell JC, LoDuca ST, Gunderson GO, Meyer RC, Briggs DEG (2017) A new Lagerstätte from the Late Ordovician Big Hill Formation, Upper Peninsula, Michigan. J Geol Soc Lond 174:18–22Google Scholar
  73. Landing E, Narbonne GM (1992) Scenella and “A chondrophorine (medusoid hydrozoan) from the basal Cambrian (Placentian) of Newfoundland'”. J Paleontol 66:338–338. CrossRefGoogle Scholar
  74. Landing E, Antcliffe JB, Geyer G, Kouchinsky A, Bowser SS, Andreas A (2018) Early evolution of colonial animals (Ediacaran Evolutionary Radiation-Cambrian Evolutionary Radiation-Great Ordovician Biodiversification interval). Earth-Sci Revs 178:105–135Google Scholar
  75. Le Heron DP (2010) Trace fossils on a Late Ordovician glacially striated pavement in Algeria. Palaeogeograph Palaeoclimat Palaeocl 297:138–143Google Scholar
  76. Legg DA (2016) A new marrellid arthropod from the Ordovician of Wales. Acta Palaeontol Pol 61:617–619Google Scholar
  77. Lerosey-Aubril R, Gaines RR, Hegna TA, Ortega-Hernández J, Van Roy P, Kier C, Bonino E (2018) The Weeks Formation Konservat-Lager and the evolutionary transition of Cambrian marine life. J Geol Soc Lond 175:705–715. CrossRefGoogle Scholar
  78. Lieberman BS, Kurkewicz R, Shinogle H, Kimmig J, MacGabhann BA (2017) Disc-shaped fossils resembling porpitids (Cnidaria: Hydrozoa) from the early Cambrian (Series 2: Stage 4) of western U.S.A. PeerJ 5(e3312):1–20. CrossRefGoogle Scholar
  79. Liu HP, McKay RM, Young JN, Witzke BJ, McVey KJ, Liu X (2006) A new Lagerstätte from the Middle Ordovician S. Peter Formation in northeast Iowa, USA. Geology 34:969–972Google Scholar
  80. Liu HP, McKay RM, Witzke BJ, Briggs DEG (2009) The Winneshiek Lagerstätte and its depositional environments [in Chinese with English summary]. Geol J China Univs 15:285–295Google Scholar
  81. MacGabhann BA (2007) Discoidal fossils of the Ediacaran biota: a review of current understanding. Geol Soc Spec Publ 286:297–313Google Scholar
  82. MacGabhann BA (2012) A solution to Darwin's dilemma: differential taphonomy of Ediacaran and Palaeozoic non-mineralised discoidal fossils. PhD Thesis, National University of Ireland, Galway, 1–338. Available at
  83. MacGabhann BA, Murray J (2010) Non-mineralised discoidal fossils from the Ordovician Bardahessiagh Formation, Co. Tyrone, Ireland. Irish J Earth Sci 28:1–12Google Scholar
  84. Martin E, Pittet B, Gutiérrez-Marco JC, Vannier J, El Hariri K, Lerosey-Aubril R, Masrour M, Nowak H, Servais T, Vandenbroucke T, Van Roy P, Vaucher R, Lefebvre B (2016) The Lower Ordovician Fezouata Konservat-Lagerstätte from Morocco: age, environment and evolutionary perspectives. Gondwana Res 34:274–283Google Scholar
  85. Masiak M, Zylinska A (1994) Burgess Shale-type fossils in Cambrian sandstones of the Holy Cross Mountains. Acta Palaeontol Pol 39:329–340Google Scholar
  86. McKirdy DM, Hall PA, Nedin C, Halverson GP, Michaelsen BH, Jago JB, Gehling JG, Jenkins RJF (2011) Paleoredox status and thermal alteration of the lower Cambrian (Series 2) Emu Bay Shale Lagerstätte, South Australia. Aust J Earth Sci 58:259–272Google Scholar
  87. Meyer MB, Ganis GR, Wittmer JM, Zalasiewicz JA, de Baets K (2018) A Late Ordovician planktic assemblage with exceptionally preserved soft-tissue problematica from the Martinsburg Formation, Pennsylvania. Palaios 33:36–46Google Scholar
  88. Muscente AD, Schiffbauer JD, Broce J, Laflamme M, O’Donnell K, Boag TH, Meyer M, Hawkins AD, Huntley JW, McNamara M, MacKenzie LA, Stanley GD Jr, Hinman NW, Hofmann MH, Xiao S (2017) Exceptionally preserved fossil assemblages through geologic time and space. Gondwana Res 48:164–188Google Scholar
  89. Neto de Carvalho C, Couto H, Figueiredo MV, Baucon A (2016) Microbial-related biogenic structures from the Middle Ordovician slates of Canelas (northern Portugal). Comunicações Geológicas 103:23–38Google Scholar
  90. Orr PJ, Briggs DEG, Kearns SL (1998) Cambrian Burgess Shale animals replicated in clay minerals. Science 281:1173–1175PubMedGoogle Scholar
  91. Ossian CR (1973) New Pennsylvanian scyphomedusan from western Iowa. J Paleontol 77:990–995Google Scholar
  92. Pates S, Daley AC, Lieberman BS (2018) Hurdiid radiodontans from the middle Cambrian (Series 3) of Utah. J Paleontol 92:99–113Google Scholar
  93. Petersen KW (1979) Development of coloniality in Hydrozoa. In: Larwood G, Rosen BR (eds) Biology and systematics of colonial animals. Academic Press, New York, pp 105–139Google Scholar
  94. Phillips J, Slater JW (1848) Palaeontological appendix to Professor John Phillips' Memoir on the Malvern Hills compared with the Paleozoic districts of Abberley. Memoirs of the Geological Survey of Great Britain 2:331–386Google Scholar
  95. Powell WG, Johnston PA, Collom CJ (2003) Geochemical evidence for oxygenated bottom waters during deposition of fossiliferous strata of the Burgess Shale Formation. Palaeogeograph Palaeocl 201:249–268Google Scholar
  96. Rábano I (1989) El genero Uralichas Delgado, 1892 (Trilobita, Lichida) en al Ordovícico o de la Península Ibérica. Bol Geol Min 100:21–47Google Scholar
  97. Rettalack GJ (2009) Cambrian-Ordovician non-marine fossils from South Australia. Alcheringa 33:355–391Google Scholar
  98. Rettalack GJ (2015) Reassessment of the Silurian problematicum Rutgersella as another post-Ediacaran vendobiont. Alcheringa 39:573–588Google Scholar
  99. Ribeiro A, Dias R, Pereira E, Merino H, Sodré Borges F, Noronha F, Marques M (1987) Guide-book for the Miranda do Douro-Porto excursion, paper presented at Conference on Plate Tectonics and Deformation, Univ. de Oviedo, Gijón-Oviedo, SpainGoogle Scholar
  100. Robison RA, Richards BC (1981) Large bivalve arthropods from the middle Cambrian of Utah. U Kans Paleontol Contribs 106:1–28Google Scholar
  101. Robison RA, Babcock LE, Gunther VG (2015) Exceptional Cambrian Fossils from Utah: A window into the age of trilobites. Utah Geological Survey, Miscellaneous Publications 15:97Google Scholar
  102. Rode AL, Lieberman BS (2002) Phylogenetic and biogeographic analysis of Devonian phyllocarid crustaceans. J Paleontol 76:271–286Google Scholar
  103. Romano M (1975) Harpid trilobites from the Ordovician of North Portugal. Comunicações Serviços geológicos de Portugal 59:27–36Google Scholar
  104. Romano M (1976) The trilobite genus Placoparia from the Ordovician of the Valongo area, North Portugal. Geol Mag 113:11–28Google Scholar
  105. Romano M (1980) The trilobite Eccoptochile from Ordovician of Northern Portugal. Palaeontology 23:605–616Google Scholar
  106. Romano M (1982a) The Ordovician biostratigraphy of Portugal—a review with new data and re-appraisal. Geol J 17:89–110Google Scholar
  107. Romano M (1982b) A revision of the Portuguese Odontopleuridae (Trilobita): Selenopeltis and Primaspis. Comunicações dos Serviços Geológicos de Portugal 68:213–223Google Scholar
  108. Romano M (1990) The trilobite Protolloydohthus from the Middle Ordovician of North Portugal. Palaeontology 33:487–493Google Scholar
  109. Romano M (1991) Trilobites from the Ordovician of Portugal. Palaeontology 34:329–355Google Scholar
  110. Romano M, Diggens JN (1974) The stratigraphy and structure of Ordovician and associated rocks around Valongo, north Portugal. Comunicações dos Serviços Geológicos de Portugal 57:23–50Google Scholar
  111. Romano M, Henry JL (1982) The trilobite genus Eoharpes from the Ordovician of Brittany and Portugal. Palaeontology 25:605–616Google Scholar
  112. Ruedemann R (1916) Account of some new or little-known species of fossils. New York State Museum Bulletin 189:7–97Google Scholar
  113. Ruiz JMG, Carnerup A, Christy AG, Wilhelm NJ, Hyde ST (2004) Morphology: an ambiguous indicator of biogenicity. Astrobiology 2:353–369Google Scholar
  114. Sappenfield AR, Tarhan LG, Droser ML (2017) Earth's oldest jellyfish strandings: a unique taphonomic window or just another day at the beach? Geol Mag 154:859–874. CrossRefGoogle Scholar
  115. Schiffbauer JD, Xiao S, Cai Y, Wallace AF, Hua H, Hunter J, Xu H, Peng Y, Kaufman AJ (2014) A unifying model for Neoproterozoic–Palaeozoic exceptional fossil preservation through pyritization and carbonaceous compression. Nat Commun 5:1–12. CrossRefGoogle Scholar
  116. Servais T, Harper DAT (2018) The Great Ordovician biodiversification event (GOBE): definition, concept and duration. Lethaia 51:151–164Google Scholar
  117. Sperling EA, Balthasar U, Skovsted CB (2018) On the edge of exceptional preservation: Insights into the role of redox state in Burgess Shale–type taphonomic windows from the Mural Formation, Alberta, Canada, in Lyons, T.W. et al. Early Earth and the Rise of Complex Life: Emerging Topics in Life Sciences 2:311–323. Google Scholar
  118. Stanley GD, Kanie Y (1985) The first Mesozoic chondrophorine (medusoid hydrozoan) from the Lower Cretaceous of Japan. Palaeontology 28:101–109Google Scholar
  119. Sun WG (1986) Precambrian medusoids: the Cyclomedusa-plexus and Cyclomedusa-like pseudofossils. Precambrian Res 31:325–360. CrossRefGoogle Scholar
  120. Tarhan LG, Droser ML, Gehling JG, Dzaugis MP (2015) Taphonomy and morphology of the Ediacara form genus Aspidella. Precambrian Res 257:124–136. CrossRefGoogle Scholar
  121. Tauber EH, Reis JM (1994) The trilobite Eoharpes cristatus Romano, 1975 from the Valongo Formation (Ordovician) of North Portugal. Comunicações do Instituto Geológico e Mineiro 80:35–49Google Scholar
  122. Thadeu D (1949) Calimenídeos portugueses. Boletim da Socieadade Geológica de Portugal 8:129–134Google Scholar
  123. Van Roy P (2006a) Non-trilobite arthropods from the Ordovician of Morocco. Unpublished PhD thesis, Ghent University, Ghent, 1–230Google Scholar
  124. Van Roy P (2006b) An aglaspidid arthropod from the Late Ordovician of Morocco with remarks on the affinities and limitations of Aglaspidida. Trans R Soc Edinb Earth Sci 96:327–350Google Scholar
  125. Van Roy P, Orr PJ, Botting JP, Muir LA, Vinther J, Lefebvre B, el Hariri K, Briggs DEG (2010) Ordovician faunas of Burgess Shale type. Nature 465:215–218PubMedGoogle Scholar
  126. Van Roy P, Briggs DEG, Gaines RR (2015) The Fezouata fossils of Morocco; an extraordinary record of marine life in the Early Ordovician. J Geol Soc Lond 172:541–549. CrossRefGoogle Scholar
  127. Vannier J, Chen J-Y (2005) Early Cambrian food chain: new evidence from fossil aggregates in the Maotianshan Shale biota, SW China. PALAIOS 20:3–26Google Scholar
  128. Verrill AE (1865) Classification of polyps. Communications of the Essex Institute 4:145–152Google Scholar
  129. von Siebold, C.T. (1848) Lehrbuch der vergleichenden Anatomie der Wirbellosen Thiere. Erster Theil, in von Siebold, C.T., and Stannius, H., eds., Lehrbuch der vergleichenden Anatomie: Berlin: Veit und Comp, 679 pGoogle Scholar
  130. Waggoner BJ, Collins AG (1995) A new chondrophorine (Cnidaria, Hydrozoa) from the Cadiz Formation (Middle Cambrian) of California. Palaeontol Z 69:7–17. CrossRefGoogle Scholar
  131. Webby BD, Cooper RA, Bergström SM, Paris F (2004) Stratigraphic framework and time slices. In: Webby BD, Paris F, Droser ML, Percival IG (eds) The great Ordovician biodiversification event. Columbia University Press, New York, pp 41–47Google Scholar
  132. Yochelson EL (1984) North American Middle Ordovician Scenella and Macroscenella as possible chondrophorine coelenterates. Palaeontologr Am 54:148–153Google Scholar
  133. Young GA, Hagadorn JW (2010) The fossil record of cnidarian medusae. Palaeoworld 19:212–221. CrossRefGoogle Scholar
  134. Young GA, Rudkin DM, Dobrzanski EP, Robson SP, Nowlan GS (2007) Exceptionally preserved Late Ordovician biotas from Manitoba, Canada. Geology 35:883–886Google Scholar
  135. Young GA, Rudkin DM, Dobrzanski EP, Robson SP, Cuggy MB, Demski MW, Thompdon DP (2012) Great Canadian Lagerstätten 3. Late Ordovician Konservat-Lagerstätten in Manitoba. Geosci Can 39:201–213Google Scholar
  136. Yuan J, Peng J, Zhao Y (2011) New bivalved arthropods from Mid-Cambrian Kaili Biota of southeastern Guizhou, southwest China. Acta Geol Sin 85:758–764Google Scholar
  137. Zhu M-Y, Zhao Y-L, Chen J-Y (2002) Revision of the Cambrian discoidal animals Stellostomites eumorphus and Pararotadiscus guizhouensis from South China. Geobios 35:165–185Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biodiversity InstituteUniversity of KansasLawrenceUSA
  2. 2.Department of Geosciences, Environment and Spatial Planning/ICTUniversity of Porto, Faculty of SciencesPortoPortugal
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceUSA

Personalised recommendations