Advertisement

The Science of Nature

, 106:21 | Cite as

Type of fixative solution in pitfall traps as a decisive factor affecting community parameters of Collembola (Hexapoda) inhabiting superficial subterranean habitats

  • Nikola JurekováEmail author
  • Natália Raschmanová
  • Ľubomír Kováč
  • Dana Miklisová
  • Martina Červená
  • Jana Christophoryová
Original Paper

Abstract

Vertical distribution of collembolan communities along a depth gradient was studied at three forested karst scree slopes in the Western Carpathians, differing in topography, microclimate, soil-chemical parameters, and forest associations. Two different fixative solutions were used in subterranean pitfall traps. The activity and species richness of Collembola in the vertical scree profiles were significantly higher in traps filled with ethylene glycol than in those filled with formaldehyde at all three sites. Using traps filled with formaldehyde, both Collembola species numbers and activity positively correlated with the soil moisture and carbon content, while for ethylene glycol traps this relation was the same only for species numbers and carbon content. Ecological groups of Collembola showed a different response, distinguished by the level of association to subterranean habitats, to environmental factors and to the fixation liquid used in the subterranean traps. Eutroglophiles, the forms relatively well-adapted to subterranean habitats, were associated with depth exclusively when using ethylene glycol traps. This implies that ethylene glycol is a more suitable preservative in terms of species richness and activity of Collembola in deeper scree layers compared to traditionally used formaldehyde. Thus, the effect of environmental factors on diversity and vertical distribution of Collembola in scree habitats may be substantially superimposed by the type of fixation used in subterranean traps.

Keywords

Scree slopes Diversity Activity Formaldehyde Ethylene glycol Arthropoda 

Notes

Acknowledgements

The authors express their gratitude to Peter Ľuptáčik and Andrej Mock (P. J. Šafárik University in Košice, Slovakia) for their assistance during the field work. We are also grateful to D. L. McLean for the linguistic correction of the manuscript and two anonymous reviewers for their constructive comments.

Funding information

The study was supported by the Slovak Scientific Grant Agency, project VEGA 1/0346/18, and the Agency for Research and Development, project APVV–17–0477. It was carried out with a permit from the Ministry of Environment of the Slovak Republic, no. 2314/2017-6.3 (21 February 2017). The study was also partially supported by the Research and Development Operational Programme, project ITMS 26220220116.

References

  1. Akkari N, Gilgado JD, Ortuño VM, Enghoff H (2018) Out of the dark void: Ommatoiulus longicornis n. sp., a new julid from Spain (Diplopoda, Julida) with notes on some troglobiomorphic traits in millipedes. Zootaxa 4420:415–429.  https://doi.org/10.11646/zootaxa.4420.3.7 CrossRefPubMedGoogle Scholar
  2. Badino G (2004) Cave temperatures and global climatic change. Int J Speleol 33:103–114CrossRefGoogle Scholar
  3. Badino G (2010) Underground meteorology. What’s the weather underground? Acta Carsol 39:427–448.  https://doi.org/10.3986/ac.v39i3.74 CrossRefGoogle Scholar
  4. Bengtsson G, Hedlund K, Rundgren S (1991) Selective odor perception in the soil collembolan Onychiurus armatus. J Chem Ecol 17:2113–2125.  https://doi.org/10.1007/BF00987995 CrossRefPubMedGoogle Scholar
  5. Berger TW, Berger P (2014) Does mixing of beech (Fagus sylvatica) and spruce (Picea abies) litter hasten decomposition? Plant Soil 377:217–234.  https://doi.org/10.1007/s11104-013-2001-9 CrossRefPubMedGoogle Scholar
  6. Bretfeld G (1999) Synopses on Palaearctic Collembola: Symphypleona. Abh Ber Naturkundemus, GörlitzGoogle Scholar
  7. Cardoso P (2012) Diversity and community assembly patterns of epigean vs. troglobiont spiders in the Iberian Peninsula. Int J Speleol 41:83–94.  https://doi.org/10.5038/1827-806X.41.1.9 CrossRefGoogle Scholar
  8. Carter MR, Gregorich EG (2008) Soil sampling and methods of analysis, second edn. Taylor and Francis Group, Boca RatonGoogle Scholar
  9. Chevaldonné P, Lejeune C (2003) Regional warming-induced species shift in Northwest Mediterranean marine caves. Ecol Lett 6:371–379.  https://doi.org/10.1046/j.1461-0248.2003.00439.x CrossRefGoogle Scholar
  10. Culver DC, Pipan T (2009) The biology of caves and other subterranean habitats. Oxford University Press, Oxford, New YorkGoogle Scholar
  11. Culver DC, Pipan T (2014) Shallow subterranean habitats: ecology, evolution, and conservation. Oxford University Press, USACrossRefGoogle Scholar
  12. Domingo-Quero T, Alonso-Zarazaga MÁ (2010) Soil and litter sampling, including MSS. Abc Taxa 8:173–212Google Scholar
  13. Dunger W, Schlitt B (2011) Tulbergiidae. Synopses on Palaearctic Collembola 6/1. Soil orgGoogle Scholar
  14. Fjellberg A (1998) The Collembola of Fennoscandia and Denmark. Part I: Poduromorpha. Fauna Entomol Scand, Brill, Leiden–Boston–Kőln 35:1–183Google Scholar
  15. Fjellberg A (2007) The Collembola of Fennoscandia and Denmark. Part II: Entomobryomorpha and Symphypleona. Fauna Entomol Scand, Brill, Leiden–Boston–Kőln 42:1–263Google Scholar
  16. Gerlach A, Voigtländer K, Heidger CM (2009) Influences of the behaviour of epigeic arthropods (Diplopoda, Chilopoda, Carabidae) on the efficiency of pitfall trapping. Soil Org 81:773–790Google Scholar
  17. Gers C (1998) Diversity of energy fluxes and interactions between arthropod communities: from soil to cave. Acta Oecol 19:205–213.  https://doi.org/10.1016/S1146-609X(98)80025-8 CrossRefGoogle Scholar
  18. Gers C, Cugny P (1983) Premiere contribution i l’etude comparative de diverses methodes d’echantillonnage des arthropodes terrestres du milieu souterrain superficiel. Bull Lab Biol Quant 1:38–44Google Scholar
  19. Gilgado JD, Ledesma E, Cuesta E, Arrechea E, Zapata de la Vega JL, Sánchez-Ruiz A, Ortuño VM (2014) Dima assoi Pérez Arcas 1872 (Coleoptera: Elateridae): from montane to hypogean life. An example of exaptations to the subterranean environment? Ann Soc Entomol Fr (NS). Int J Entomol 50:264–271.  https://doi.org/10.1080/00379271.2014.981421 CrossRefGoogle Scholar
  20. Gilgado JD, Enghoff H, Tinaut A, Ortuño VM (2015) Hidden biodiversity in the Iberian Mesovoid shallow substratum (MSS): new and poorly known species of the millipede genus Archipolydesmus Attems, 1898 (Diplopoda, Polydesmidae). Zool Anz 258:13–38.  https://doi.org/10.1016/j.jcz.2015.06.001 CrossRefGoogle Scholar
  21. Greenslade P, Boyer S, Shields MW, Wratten SD (2017) First record of a possible predatory collembolan species, Dicyrtoma fusca (Collembola: Dicyrtomidae), in New Zealand. Austral Entomology 56:332–338.  https://doi.org/10.1111/aen.12240 CrossRefGoogle Scholar
  22. Gruia M, Ilie V (2001) Collembola of the karstic system of Romania (II). Trav Inst Speol “E Racovitza” 39:59-114Google Scholar
  23. Howarth FG (1980) The zoogeography of specialized cave animals: a bioclimatic model. Evolution 34:394–406.  https://doi.org/10.2307/2407402 CrossRefPubMedGoogle Scholar
  24. Höfer H, Astrin J, Holstein J, Spelda J, Meyer F, Zarte N (2015) Propylene glycol—a useful capture preservative for spiders for DNA barcoding. Arachnol Mitt 50:30–36 https://doi.org/5431/aramit5005 CrossRefGoogle Scholar
  25. Jacob M, Viedenz K, Polle A, Thomas FM (2010) Leaf litter decomposition in temperate deciduous forest stands with a decreasing fraction of beech (Fagus sylvatica). Oecologia 164:1083–1094.  https://doi.org/10.1007/s00442-010-1699-9 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Jiménez-Valverde A, Gilgado JD, Sendra A, Pérez-Suárez G, Herrero-Borgoñón JJ, Ortuño VM (2015) Exceptional invertebrate diversity in a scree slope in eastern Spain. J Insect Conserv 19:713–728.  https://doi.org/10.1007/s10841-015-9794-1 CrossRefGoogle Scholar
  27. Juberthie C (2000) The diversity of the karstic and pseudokarstic hypogean habitats in the world. In: Wilkens H, Culver DC, Humphreys WF (eds) Subterranean Ecosystems (ecosystems of the world 30) Elsevier, Amsterdam, pp 17–39Google Scholar
  28. Knapp M, Růžička J (2012) The effect of pitfall trap construction and preservative on catch size, species richness and species composition of ground beetles (Coleoptera: Carabidae). Eur J Entomol 109:419–426.  https://doi.org/10.14411/eje.2012.054 CrossRefGoogle Scholar
  29. Kováč Ľ, Parimuchová A, Miklisová D (2016) Distributional patterns of cave Collembola (Hexapoda) in association with habitat conditions, geography and subterranean refugia in the Western Carpathians. Biol J Linn Soc 119:571–592.  https://doi.org/10.1111/bij.12555 CrossRefGoogle Scholar
  30. Kozel P, Pipan T, Šajna N, Polak S, Novak T (2017) Mitigating the conflict between pitfall-trap sampling and conservation of terrestrial subterranean communities in caves. Int J Speleol 46:359–368.  https://doi.org/10.5038/1827-806X.46.3.2123 CrossRefGoogle Scholar
  31. Laška V, Kopecký O, Růžička V, Mikula J, Véle A, Šarapatka B (2011) Vertical distribution of spiders in soil. J Arachnol 39:393–398.  https://doi.org/10.1636/P09-75.1 CrossRefGoogle Scholar
  32. López H, Oromí P (2010) A pitfall trap for sampling the mesovoid shallow substratum (MSS) fauna. Speleobiology 2:7–11Google Scholar
  33. Mammola S, Giachino PM, Piano E, Jones A, Barberis M, Badino G, Isaia M (2016) Ecology and sampling techniques of an understudied subterranean habitat: the milieu Souterrain Superficiel (MSS). Sci Nat 103:88.  https://doi.org/10.1007/s00114-016-1413-9 CrossRefGoogle Scholar
  34. Mammola S, Piano E, Giachino PМ, Isaia M (2017) An ecological survey of the invertebrate community at the epigean/hypogean interface. Subterr Biol 24:27–52.  https://doi.org/10.3897/subtbiol.24.21585 CrossRefGoogle Scholar
  35. Mammola S (2018) Finding answers in the dark: caves as models in ecology fifty years after Poulson and white. Ecography 41:1–21.  https://doi.org/10.1111/ecog.03905 CrossRefGoogle Scholar
  36. Mammola S, Leroy B (2018) Applying species distribution models to caves and other subterranean habitats. Ecography 41:1194–1208.  https://doi.org/10.1111/ecog.03464 CrossRefGoogle Scholar
  37. Mammola S, Arnedo MA, Pantini P, Piano E, Chiappetta N, Isaia M (2018a) Ecological speciation in darkness? Spatial niche partitioning in sibling subterranean spiders (Araneae: Linyphiidae: Troglohyphantes). Invertebr Syst 32:1069–1082.  https://doi.org/10.1071/IS17090 CrossRefGoogle Scholar
  38. Mammola S, Goodacre SL, Isaia M (2018b) Climate change may drive cave spiders to extinction. Ecography 41:233–243.  https://doi.org/10.1111/ecog.02902 CrossRefGoogle Scholar
  39. Marshall DA, Doty RL (1990) Taste responses of dogs to ethylene glycol, propylene glycol, and ethylene glycol-based antifreeze. J Am Vet Med Assoc 197:1599–1602PubMedGoogle Scholar
  40. Marshall SA, Anderson RS, Roughley RE, Behan-Pelletier V, Danks HV (1994) Terrestrial arthropod biodiversity: planning a study and recommended sampling techniques. BSC (terrestrial arthropods) pp 32Google Scholar
  41. McCravy KW, Willand JE (2007) Effects of pitfall trap preservative on collections of carabid beetles (Coleoptera: Carabidae). Great Lakes Entomol 40:154–156Google Scholar
  42. Mock A, Šašková T, Raschmanová N, Jászay T, Ľuptáčik P, Rendoš M, Tajovský K, Jászayová A (2015) An introductory study of subterranean communities of invertebrates in forested talus habitats in southern Slovakia. Acta Soc Zool Bohem 79:243–256Google Scholar
  43. Nae A (2008) Data concerning the Araneae fauna from the aninei mountains Karsik area (Banat, Romania). Trav Inst Speol “E Racovitza” 47:53-63Google Scholar
  44. Nae I, Băncilă RI (2017) Mesovoid shallow substratum as a biodiversity hotspot for conservation priorities: analysis of oribatid mite (Acari: Oribatida) fauna. Acarol 57:855–868.  https://doi.org/10.24349/acarologia/20174202 CrossRefGoogle Scholar
  45. Nitzu E (2016) Scree habitat as ecological refuge: a case study on the Carpathian endemic species Platynus glacialis and Pterostichus pilosus wellensii (Coleoptera, Carabidae) in their first case of co-occurrence in the rock debris. North-West J Zoology 12:33–39Google Scholar
  46. Nitzu E, Nae A, Popa I (2006) Eco-faunistic study on the invertebrate fauna (Araneae, Collembola, Coleoptera) from the Varghis gorge natural reserve, with special note on the micro-refugial role of subterranean habitats. Trav I Speol “E Racovitza” 45:31-50Google Scholar
  47. Nitzu E, Nae A, Giurginca A, Popa I (2010) Invertebrate communities from the mesovoid shallow substratum of the Carpatho-Euxinic area: ecofaunistic and zoogeographic analyses. Trav I Speol “E Racovitza” 49:41-79Google Scholar
  48. Nitzu E, Popa I, Giurginca A (2011) Invertebrate fauna (Coleoptera, Collembola, Diplopoda, isopoda) collected in the karst areas of the Aninei - Locvei mountains. Trav I Speol “E Racovitza” 50:15-35Google Scholar
  49. Nitzu E, Nae A, Băncilă R, Popa I, Giurginca A, Plăiaşu R (2014) Scree habitats: ecological function, species conservation and spatial-temporal variation in the arthropod community. Syst Biodivers 12:65–75.  https://doi.org/10.1080/14772000.2013.878766 CrossRefGoogle Scholar
  50. Nitzu E, Dorobăţ ML, Popa I, Giurginca A, Baba Ş (2018a) The influence of geological substrate on the faunal structure of the superficial subterranean habitats. Carpath J Earth Environ Sci 13:383–393.  https://doi.org/10.26471/cjees/2018/013/033 CrossRefGoogle Scholar
  51. Nitzu E, Vlaicu M, Giurginca A, Meleg IN, Popa I, Nae A, Baba Ş (2018b) Assessing preservation priorities of caves and karst areas using the frequency of endemic cave-dwelling species. Int J Speleol 47:43–52.  https://doi.org/10.5038/1827-806X.47.1.2147 CrossRefGoogle Scholar
  52. Ortuño VM, Gilgado JD, Jiménez-Valverde A, Sendra A, Pérez-Suárez G, Herrero-Borgoñón JJ (2013) The “alluvial Mesovoid shallow substratum”, a new subterranean habitat. PLoS One 8:e76311.  https://doi.org/10.1371/journal.pone.0076311 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Ortuño VM, Cuesta E, Gilgado JD, Ledesma E (2014) A new hypogean Trechus Clairville (Coleoptera, Carabidae, Trechini) discovered in a non-calcareous superficial subterranean habitat of the Iberian system (Central Spain). Zootaxa 3802:359–372.  https://doi.org/10.11646/zootaxa.3802.3.5 CrossRefGoogle Scholar
  54. Pekár S (2002) Differential effects of formaldehyde concentration and detergent on the catching efficiency of surface active arthropods by pitfall traps. Pedobiologia 46:539–547.  https://doi.org/10.1078/0031-4056-00158 CrossRefGoogle Scholar
  55. Pipan T, Culver DC (2013) Organic carbon in shallow subterranean habitats. Acta Carsol 42:291–300.  https://doi.org/10.3986/ac.v42i2.603 CrossRefGoogle Scholar
  56. Pipan T, López H, Oromí P, Polak S, Culver DC (2011) Temperature variation and the presence of troglobionts in terrestrial shallow subterranean habitats. J Nat Hist 45:253–273.  https://doi.org/10.1080/00222933.2010.523797 CrossRefGoogle Scholar
  57. Pomorski RJ (1998) Onychiurinae of Poland (Collembola: Onychiuridae). Genus-Int J taxon [Suppl], WrocławGoogle Scholar
  58. Popa I, Dorobăţ L (2015) New records and rare species of Collembola for the Romanian Fauna (Leaota massif, southern Carpathians). Trav I Speol “E Racovitza” pp 41-46Google Scholar
  59. Potapov M (2001) Isotomidae. In: Dunger W (ed) Synopses on Palearctic Collembola. Abh Ber Naturkundemus, GörlitzGoogle Scholar
  60. Raschmanová N, Kováč Ľ, Miklisová D (2008) The effect of mesoclimate on Collembola diversity in the Zádiel Valley, Slovak karst (Slovakia). Eur J Soil Biol 44:463–472.  https://doi.org/10.1016/j.ejsobi.2008.07.005 CrossRefGoogle Scholar
  61. Raschmanová N, Miklisová D, Kováč Ľ (2018) A unique small-scale microclimatic gradient in a temperate karst harbours exceptionally high diversity of soil Collembola. Int J Speleol 47:247–262.  https://doi.org/10.5038/1827-806X.47.2.2194 CrossRefGoogle Scholar
  62. Rendoš M, Mock A, Jászay T (2012) Spatial and temporal dynamics of invertebrates dwelling karstic mesovoid shallow substratum of Sivec National Nature Reserve (Slovakia), with emphasis on Coleoptera. Biologia 67:1143–1151.  https://doi.org/10.2478/s11756-012-0113-y CrossRefGoogle Scholar
  63. Rendoš M, Čejka T, Šteffek J, Mock A (2014) Land snails from subterranean traps exposed in a forested scree slope (Western Carpathians, Slovakia). Folia Malacol 22:255–261.  https://doi.org/10.12657/folmal.022.022 CrossRefGoogle Scholar
  64. Rendoš M, Mock A, Miklisová D (2016a) Terrestrial isopods and myriapods in a forested scree slope: subterranean biodiversity, depth gradient and annual dynamics. J Nat Hist 50:2129–2142.  https://doi.org/10.1080/00222933.2016.1193642 CrossRefGoogle Scholar
  65. Rendoš M, Raschmanová N, Kováč Ľ, Miklisová D, Mock A, Ľuptáčik P (2016b) Organic carbon content and temperature as substantial factors affecting diversity and vertical distribution of Collembola on forested scree slopes. Eur J Soil Biol 75:180–187.  https://doi.org/10.1016/j.ejsobi.2016.06.001 CrossRefGoogle Scholar
  66. Rudy J, Rendoš M, Ľuptáčik P, Mock A (2018) Terrestrial isopods associated with shallow underground of forested scree slopes in the Western Carpathians (Slovakia). Zookeys 801:323–335.  https://doi.org/10.3897/zookeys.801.24113 CrossRefGoogle Scholar
  67. Růžička J (2000) Beetle communities (Insecta: Coleoptera) of rocky debris on the Kamenec hill (Czech Republic). Acta Univ Purk Stu Biol 4:175–182Google Scholar
  68. Růžička V, Dolanský J (2016) Catching of spiders in shallow subterranean habitats in the Czech Republic. Arachnol Mitt 51:43–48.  https://doi.org/10.5431/aramit5106 CrossRefGoogle Scholar
  69. Růžička V, Klimeš L (2005) Spider (Araneae) communities of scree slopes in the Czech Republic. J Arachnol 33:280–289.  https://doi.org/10.1636/04-44.1 CrossRefGoogle Scholar
  70. Růžička V, Thaler K (2002) Spiders (Araneae) from deep screes in the northern Alps (Tyrol, Austria). Ber Nat Med Verein Innsbruck 89:137–141Google Scholar
  71. Růžička V, Zacharda M, Němcová L, Šmilauer P, Nekola JC (2012) Periglacial microclimate in low-altitude scree slopes supports relict biodiversity. J Nat Hist 46:2145–2157.  https://doi.org/10.1080/00222933.2012.707248 CrossRefGoogle Scholar
  72. Sánchez-Fernández D, Rizzo V, Cieslak A, Faille A, Fresneda J, Ribera I (2016) Thermal niche estimators and the capability of poor dispersal species to cope with climate change. Sci Rep 6:23381.  https://doi.org/10.1038/srep23381 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Schlick-Steiner BC, Steiner FM (2000) Eine neue subterranfalle and Fänge aus Kärnten. Carinthia II 190:475–482Google Scholar
  74. Sendra A, Jiménez-Valverde A, Gilgado JD, Ledesma E, Baquero E, Pérez-Suárez G, Cuesta E, Herrero-Borgoñón JJ, Jordana R, Tinaut A, Barranco P, Ortuño VM (2017) Diplurans of subsurface terrestrial habitats in the Iberian Peninsula, with a new species description (Diplura: Campodeidae). Zootaxa 4291:61–80.  https://doi.org/10.11646/zootaxa.4291.1.4 CrossRefGoogle Scholar
  75. Sket B (2008) Can we agree on an ecological classification of subterranean animals? J Nat Hist 42:1549–1563CrossRefGoogle Scholar
  76. Šestáková A, Mock A, Christophoryová J, Gajdoš P (2018) Two subterranean-dwelling spiders new to Slovakia (Araneae: Linyphiidae). Arachnol Mitt 55:25–29.  https://doi.org/10.30963/aramit5504 CrossRefGoogle Scholar
  77. ter Braak CJF, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcomputer Power, Ithaca, p 496Google Scholar
  78. Thibaud JM, Schulz HJ, da Gama Assalino MM (2004) Synopses on Palearctic Collembola, Hypogastruridae. Abh Ber Naturkundemus, GörlitzGoogle Scholar
  79. Thomas CFG, Parkinson L, Marshall EJP (1998) Isolating the components of activity-density for the carabid beetle Pterostichus melanarius in farmland. Oecologia 116:103–112.  https://doi.org/10.1007/s004420050568 CrossRefPubMedGoogle Scholar
  80. TIBCO Software Inc. (2013) STATISTICA (data analysis software system), version 12. https://www.tibco.com/products/tibco-statistica
  81. Wallwork JA (1970) Ecology of soil animals. McGraw-Hill, London, p 283Google Scholar
  82. Weeks RD Jr, McIntyre NE (1997) A comparison of live versus kill pitfall trapping techniques using various killing agents. Entomol Exp Appl 82:267–273.  https://doi.org/10.1046/j.1570-7458.1997.00140.x CrossRefGoogle Scholar
  83. Wynne JJ, Bernard EC, Howarth FG, Sommer S, Soto-Adames FN, Taiti S, Mockford EL, Horrocks M, Pakarati L, Pakarati-Hotus V (2014) Disturbance relicts in a rapidly changing world: the Rapa Nui (Easter Island) factor. BioScience 64:711–718.  https://doi.org/10.1093/biosci/biu090 CrossRefGoogle Scholar
  84. Zacharda M, Gude M, Kraus S, Hauck C, Molenda R, Růžička V (2005) The relict mite Rhagidia gelida (Acari, Rhagidiidae) as a biological cryoindicator of periglacial microclimate in European highland screes. Arct Antarct Alp Res 37:402–408. https://doi.org/10.1657/1523-0430(2005)037[0402:TRMRGA]2.0.CO;2CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Zoology, Institute of Biology and Ecology, Faculty of SciencePavol Jozef Šafárik UniversityKošiceSlovakia
  2. 2.Institute of ParasitologySlovak Academy of SciencesKošiceSlovakia
  3. 3.Department of Zoology, Faculty of Natural SciencesComenius University, Mlynská dolina B-1BratislavaSlovakia

Personalised recommendations