Advertisement

The Science of Nature

, 105:43 | Cite as

Highly modular pattern in ant-plant interactions involving specialized and non-specialized myrmecophytes

  • Alain Dejean
  • Frédéric Azémar
  • Frédéric Petitclerc
  • Jacques H. C. Delabie
  • Bruno Corbara
  • Céline Leroy
  • Régis Céréghino
  • Arthur Compin
Original Paper

Abstract

Because Tachia guianensis (Gentianaceae) is a “non-specialized myrmecophyte” associated with 37 ant species, we aimed to determine if its presence alters the ant guild associated with sympatric “specialized myrmecophytes” (i.e., plants sheltering a few ant species in hollow structures). The study was conducted in a hilly zone of a neotropical rainforest where two specialized myrmecophytes grow at the bottom of the slopes, another at mid-slope, and a fourth on the hilltops. Tachia guianensis, which occurred everywhere, had its own guild of associated ant species. A network analysis showed that its connections with the four other myrmecophytes were rare and weak, the whole resulting in a highly modular pattern of interactions with one module (i.e., subnetwork) per myrmecophyte. Three ant species parasitized three out of the four specialized myrmecophytes (low nestedness noted), but were not or barely associated with T. guianensis that therefore did not influence the parasitism of specialized myrmecophytes.

Keywords

Ant-plant mutualism Ecological network Myrmecophytes Modularity Nestedness Sympatric species 

Notes

Acknowledgments

We are grateful to Andrea Yockey-Dejean for proofreading the manuscript and to the Laboratoire Environnement de Petit Saut for its logistical assistance.

Funding information

Financial support was provided by the Investissement d’Avenir grants managed by the Agence Nationale de la Recherche (CEBA, ref. ANR-10- LABX-25-01) and a research grant by the Brazilian CNPq.

Supplementary material

114_2018_1570_MOESM1_ESM.docx (1.7 mb)
ESM 1 (DOCX 1695 kb)

References

  1. Alvarez G, Armbrecht I, Jiménez E, Armbrecht H, Ulloa-Chacon P (2001) Ant-plant association in two Tococa species from a primary rain forest of Colombian Choco (Hymenoptera: Formicidae). Sociobiology 38:585–601Google Scholar
  2. Beattie A (1989) Myrmecotrophy: plants fed by ants. Trends Ecol Evol 4:172–176.  https://doi.org/10.1016/0169-5347(89)90122-5 CrossRefPubMedGoogle Scholar
  3. Beattie AJ, Hughes L (2002) Ant-plant interactions. In: Herrera C, Pellmyr O (eds) Plant-animal interactions: an evolutionary approach. Blackwell, Oxford, pp 211–235Google Scholar
  4. Benson WW (1985) Amazon ant-plants. In: Prance GT, Lovejoy TE (eds) Amazonia. Pergamon Press, Oxford, pp 239–266Google Scholar
  5. Blüthgen N, Menzel F, Blüthgen N (2006) Measuring specialization in species interaction networks. BMC Ecol 6(9):9.  https://doi.org/10.1186/1472-6785-6-9 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Blüthgen N, Menzel F, Hovestadt T, Fiala B, Blüthgen N (2007) Specialization, constraints, and conflicting interests in mutualistic networks. Curr Biol 17:341–346.  https://doi.org/10.1016/j.cub.2006.12.039 CrossRefPubMedGoogle Scholar
  7. Bruna EM, Izzo TJ, Inouye BD, Vasconcelos HL (2014) Effect of mutualist partner identity on plant demography. Ecology 95:3237–3243.  https://doi.org/10.1890/14-0481.1 CrossRefGoogle Scholar
  8. Chanam J, Sheshshayee MS, Kasinathan S, Jagdeesh A, Joshi KA, Borges RM (2014) Nutritional benefits from domatia inhabitants in an ant-plant interaction: interlopers do pay the rent. Funct Ecol 28:1107–1116.  https://doi.org/10.1111/1365-2435 CrossRefGoogle Scholar
  9. Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695. http://igraph.org
  10. Dáttilo W (2012) Different tolerances of symbiotic and nonsymbiotic ant-plant networks to species extinctions. Network Biol 2:127–138 http://www.iaees.org/publications/journals/nb/articles/2012-2(4)/tolerances-of-symbiotic-and-nonsymbiotic Google Scholar
  11. Dáttilo W, Izzo TJ, Inouye BD, Vasconcelos HL, Bruna EM (2009) Recognition of host plant volatiles by Pheidole minutula Mayr (Myrmicinae), an Amazonian ant-plant specialist. Biotropica 41:642–646.  https://doi.org/10.1111/j.1744-7429.2009.00518.x CrossRefGoogle Scholar
  12. Dáttilo W, Izzo TJ, Vasconcelos HL, Rico-Gray V (2013) Strength of the modular pattern in Amazonian symbiotic ant-plant networks. Arthropod Plant Interact 7:455–461.  https://doi.org/10.1007/s11829-013-9256-1 CrossRefGoogle Scholar
  13. Dejean A, Delabie JHC, Cerdan P, Gibernau M, Corbara B (2006) Are myrmecophytes always better protected against herbivores than other plants? Biol J Linn Soc 89:91–98.  https://doi.org/10.1111/j.1095-8312.2006.00660.x CrossRefGoogle Scholar
  14. Dejean A, Petitclerc F, Compin A, Azémar F, Corbara B, Delabie JHC, Leroy C (2017) Hollow internodes permit a neotropical understory plant to shelter multiple mutualistic ant species, obtaining protection and nutrient provisioning (myrmecotrophy). Am Nat 190:E124–E131.  https://doi.org/10.1086/693782 CrossRefPubMedGoogle Scholar
  15. Djiéto-Lordon C, Dejean A (1999a) Tropical arboreal ant mosaic: innate attraction and imprinting determine nesting site selection in dominant ants. Behav Ecol Sociobiol 45:219–225.  https://doi.org/10.1007/s002650050556 CrossRefGoogle Scholar
  16. Djiéto-Lordon C, Dejean A (1999b) Innate attraction supplants experience during host plant selection in an obligate plant-ant. Behav Process 46:181–187.  https://doi.org/10.1016/S0376-6357(99)00032-7 CrossRefGoogle Scholar
  17. Edwards DP, Hassall M, Sutherland WJ, Yu DW (2006) Assembling a mutualism: ant symbionts locate their host plants by detecting volatile chemicals. Insect Soc 53:172–176.  https://doi.org/10.1007/s00040-006-0855-z CrossRefGoogle Scholar
  18. Federle W, Maschwitz U, Hölldobler B (2002) Pruning of host plant neighbours as defence against enemy ant invasions: Crematogaster ant partners of Macaranga protected by “wax barriers” prune less than their congeners. Oecologia 132:264–270.  https://doi.org/10.1007/s00442-002-0947-z CrossRefPubMedGoogle Scholar
  19. Fonseca CR, Ganade G (1996) Asymmetries, compartments and null interactions in an Amazonian ant-plant community. J Anim Ecol 65:39–347.  https://doi.org/10.2307/5880 CrossRefGoogle Scholar
  20. Fortuna MA, Stouffer DB, Olesen JM, Jordano P, Mouillot D, Krasnov BR, Poulin R, Bascompte J (2010) Nestedness versus modularity in ecological networks: two sides of the same coin? J Anim Ecol 2010(79):811–817.  https://doi.org/10.1111/j.1365-2656.2010.01688.x CrossRefGoogle Scholar
  21. Frederickson ME (2009) Conflict over reproduction in an ant-plant symbiosis: why Allomerus octoarticulatus ants sterilize Cordia nodosa. Am Nat 173:675–681.  https://doi.org/10.1086/597608 CrossRefPubMedGoogle Scholar
  22. Fruchterman TMJ, Reingold EM (1991) Graph drawing by force-directed placement. Soft Pract Exp 21:1129–1164.  https://doi.org/10.1002/spe.4380211102 CrossRefGoogle Scholar
  23. Galeano J, Pastor JM, Iriondo JM (2009) Weighted-interaction nestedness estimator (WINE): a new estimator to calculate over frequency matrices. Environ Model Softw 24:1342–1346.  https://doi.org/10.1016/j.envsoft.2009.05.014 CrossRefGoogle Scholar
  24. Goitía W, Jaffé K (2009) Ant-plant associations in different forests in Venezuela. Neotrop Entomol 38:7–31.  https://doi.org/10.1590/S1519-566X2009000100002 CrossRefGoogle Scholar
  25. Grangier J, Dejean A, Solano PJ, Orivel J (2009) Mechanisms driving the specificity of a myrmecophyte-ant association. Biol J Linn Soc 97:90–97.  https://doi.org/10.1111/j.1095-8312.2008.01188.x CrossRefGoogle Scholar
  26. Grilli J, Rogers T, Allesina S (2016) Modularity and stability in ecological communities. Nat Commun 7:1203.  https://doi.org/10.1038/ncomms12031 CrossRefGoogle Scholar
  27. Heil M, McKey D (2003) Protective ant-plant interactions as model systems in ecological and evolutionary research. Ann Rev Ecol Evol Syst 34:425–453CrossRefGoogle Scholar
  28. Jürgens A, Feldhaar H, Feldmeyer B, Fiala B (2006) Chemical composition of leaf volatiles in Macaranga species (Euphorbiaceae) and their potential role as olfactory cues in host-localization of foundress queens of specific ant partners. Biochem Syst Ecol 34:97–113.  https://doi.org/10.1016/j.bse.2005.08.005 CrossRefGoogle Scholar
  29. Longino JT (2003) The Crematogaster (Hymenoptera, Formicidae, Myrmicinae) of Costa Rica. Zootaxa 151(1):150.  https://doi.org/10.11646/zootaxa.151.1.1 CrossRefGoogle Scholar
  30. Orivel J, Lambs L, Malé P-JG, Leroy C, Grangier J, Otto T, Quilichini A, Dejean A (2011) Dynamics of the association between a long-lived understory myrmecophyte and its specific associated ants. Oecologia 165:369–376.  https://doi.org/10.1007/S00442-010-1739-5 CrossRefPubMedGoogle Scholar
  31. Orivel J, Malé P-JG, Lauth J, Roux O, Petitclerc F, Dejean A, Leroy C (2017) Trade-offs in mutualistic investment in a tripartite symbiosis. Proc R Soc Lond B 284:20161679.  https://doi.org/10.1098/rspb.2016.1679 CrossRefGoogle Scholar
  32. Palmer TM, Doak DF, Stanton ML, Bronstein JL, Kiers ET, Young TP, Goheen JR, Pringle RM (2010) Synergy of multiple partners, including freeloaders, increases host fitness in a multispecies mutualism. Proc Natl Acad Sci U S A 107:17234–17239.  https://doi.org/10.1073/pnas.1006872107 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Plowman NS, Hood ASC, Moses J, Redmond C, Novotny V, Klimes P, Fayle TM (2017) Network reorganization and breakdown of an ant–plant protection mutualism with elevation. Proc R Soc B 284:20162564.  https://doi.org/10.1098/rspb.2016.2564 CrossRefPubMedGoogle Scholar
  34. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www.R-project.org/
  35. Reichardt J, Bornholdt S (2006) Statistical mechanics of community detection. Phys Rev E 74:016110.  https://doi.org/10.1103/PhysRevE.74.016110 CrossRefGoogle Scholar
  36. Rico-Gray V, Oliveira P (2007) The ecology and evolution of ant-plant interactions. The University of Chicago Press, Chicago.  https://doi.org/10.7208/chicago/9780226713540.001.0001 CrossRefGoogle Scholar
  37. Solano PJ, Durou S, Corbara B, Quilichini A, Cerdan P, Belin-Depoux M, Delabie JHC, Dejean A (2003) Myrmecophytes of the understory of French Guianian rainforests: their distribution and their associated ants. Sociobiology 41:605–614Google Scholar
  38. Strauss SY, Irwin RE (2004) Ecological and evolutionary consequences of multispecies plant-animal interactions. Annu Rev Ecol Evol Syst 35:435–466.  https://doi.org/10.1146/annurev.ecolsys.35.112202.130215 CrossRefGoogle Scholar
  39. Struwe L, Kinkade MP (2013) Revision of Tachia (Gentianaceae: Helieae). Syst Bot 38:1142–1159.  https://doi.org/10.1600/036364413X674797 CrossRefGoogle Scholar
  40. Vasconcelos HL, Davidson DW (2000) Relationship between plant size and ant associates in two Amazonian ant-plants. Biotropica 32:100–111.  https://doi.org/10.1111/j.1744-7429.2000.tb00452.x CrossRefGoogle Scholar
  41. Vázquez DP, Blüthgen N, Cagnolo L, Chacoff NP (2009) Uniting pattern and process in plant-animal mutualistic networks: a review. Ann Bot 103:1445–1457.  https://doi.org/10.1093/aob/mcp057 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.UPS-ECOLAB, CNRSUniversité de ToulouseToulouseFrance
  2. 2.CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRAUniversité des Antilles, Université de GuyaneKourouFrance
  3. 3.Laboratório de MirmecologiaCEPEC-CEPLACItabunaBrazil
  4. 4.UESC-DCAAIlhéusBrazil
  5. 5.CNRS, LMGEUniversité Clermont AuvergneClermont-FerrandFrance
  6. 6.AMAP, IRD, CIRAD, CNRS, INRAUniversité de MontpellierMontpellierFrance

Personalised recommendations