The Science of Nature

, 105:30 | Cite as

Comparison of the capture efficiency, prey processing, and nutrient extraction in a generalist and a specialist spider predator

  • Luis Fernando GarcíaEmail author
  • Carmen Viera
  • Stano PekárEmail author
Original Paper


Predators are traditionally classified as generalists and specialists based on the presence of adaptations that increase efficiency of prey capture and consumption and selection of particular prey types. Nevertheless, empirical evidence comparing foraging efficiency between generalist and specialist carnivores is scarce. We compared the prey-capture and feeding efficiency in a generalist and a specialist (araneophagous) spider predator. By using two related species, the generalist Harpactea rubicunda (Dysderidae) and the specialist Nops cf. variabilis (Caponiidae), we evaluated their fundamental trophic niche by studying the acceptance of different prey. Then, we compared their predatory behavior, efficiency in capturing prey of varying sizes, feeding efficiency, and nutrient extraction. Nops accepted only spiders as prey, while Harpactea accepted all offered prey, confirming that Nops is stenophagous, while Harpactea is euryphagous. Further, Nops displayed more specialized (stereotyped) capture behavior than Harpactea, suggesting that Nops is a specialist, while Harpactea is a generalist. The specialist immobilized prey faster, overcame much larger prey, and gained more mass (due to feeding on larger prey) than the generalist. Both the specialist and the generalist spider extracted more proteins than lipids, but the extraction of macronutrients in the specialist was achieved mainly by consuming the prosoma of the focal prey. We show that the specialist has more efficient foraging strategy than the generalist.


Macronutrients Predatory behavior Dangerous prey Trophic niche Prey size 



We thank Juan Valenzuela, Julio González and Martín Santana for their help with specimen collection. We are also grateful to Milan Řezáč for information on the trophic niche of Harpactea and Ondřej Michálek and Radek Michalko for their collaboration during the development of the project.

Funding information

The study was supported by PEDECIBA, grant 8880 of the Uruguayan Agency for Research and Innovation (ANII), and by the Czech Science Foundation (GA15-14762S).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

114_2018_1555_MOESM1_ESM.mp4 (8.5 mb)
Video S1 Prey capture sequence of Nops catching Pardosa. The video was taken by high-speed camera with the frame-rate 500fps. (MP4 8685 kb)


  1. Anderson JF (1974) Responses to starvation in the spiders Lycosa lenta Hentz and Filistata hibernalis (Hentz). Ecology 55:576–585CrossRefGoogle Scholar
  2. Breed MD, Moore J (2015) Animal behavior. Academic Press, San DiegoGoogle Scholar
  3. Britt EJ, Hicks JW, Bennett AF (2006) The energetic consequences of dietary specialization in populations of the garter snake, Thamnophis elegans. J Exp Biol 209:3164–3169CrossRefPubMedGoogle Scholar
  4. Bulbert MW, Herberstein ME, Cassis G (2014) Assassin bug requires dangerous ant prey to bite first. Curr Biol 24:R220–R221CrossRefPubMedGoogle Scholar
  5. Cardoso P, Pekár S, Jocqué R, Coddington JA (2011) Global patterns of guild composition and functional diversity of spiders. PLoS One 6:e21710CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cerveira A, Jackson RR (2005) Specialised predation by Palpimanus sp. (Araneae: Palpimanidae) on jumping spiders (Araneae: Salticidae). J East African Nat Hist 94(2):303–317CrossRefGoogle Scholar
  7. Elner RW, Hughes RN (1978) Energy maximization in the diet of the shore crab, Carcinus maenas. J Anim Ecol 47:103–116CrossRefGoogle Scholar
  8. Futuyma DJ, Moreno G (1988) The evolution of ecological specialization. Annu Rev Ecol Syst 19:207–233CrossRefGoogle Scholar
  9. Gabadinho A, Ritschard G, Müller NS, Studer M (2011) Analyzing and visualizing state sequences in R with TraMineR. J Stat Softw 40(4):1–37CrossRefGoogle Scholar
  10. Haddad CR, Brabec M, Pekár S, Fourie R (2016) Seasonal population dynamics of a specialized termite-eating spider (Araneae: Ammoxenidae) and its prey (Isoptera: Hodotermitidae). Pedobiologia 59:105–110CrossRefGoogle Scholar
  11. Harland DP, Jackson RR (2006) A knife in the back: use of prey-specific attack tactics by araneophagic jumping spiders (Araneae: Salticidae). J Zool 269:285–290CrossRefGoogle Scholar
  12. Hawley J, Simpson SJ, Wilder SM (2014) Effects of prey macronutrient content on body composition and nutrient intake in a web-building spider. PLoS One 9:e99165CrossRefPubMedPubMedCentralGoogle Scholar
  13. Heller R (1980) On optimal diet in a patchy environment. Theor Popul Biol 17:201–214CrossRefPubMedGoogle Scholar
  14. Jackson RR, Hallas SEA (1986) Comparative biology of Portia africana, P. albimana, P. fimbriata, P. labiata, and P. schultzi, araneophagic, web-building jumping spiders ( Araneae : Salticidae ): utilisation of webs, predatory versatility, and intraspecific interactions. N Z J Zool 13:423–489CrossRefGoogle Scholar
  15. Kohl KD, Coogan SCP, Raubenheimer D (2015) Do wild carnivores forage for prey or for nutrients? Evidence for nutrient-specific foraging in vertebrate predators. BioEssays 37:701–709CrossRefPubMedGoogle Scholar
  16. Konno K, Kazuma K, Nihei K (2016) Peptide toxins in solitary wasp venoms. Toxins 8:114CrossRefPubMedPubMedCentralGoogle Scholar
  17. Krebs CJ (1999) Ecological methodology, 2nd edn. Addison-Wesley Educational Publishers, Menlo ParkGoogle Scholar
  18. Lauder GV (1983) Functional and morphological bases of trophic specialization in sunfishes (Teleostei, Centrarchidae). J Morphol 178:1–21CrossRefGoogle Scholar
  19. Lee KP, Raubenheimer D, Behmer ST, Simpson SJ (2003) A correlation between macronutrient balancing and insect host-plant range: evidence from the specialist caterpillar Spodoptera exempta (Walker). J Insect Physiol 49:1161–1171CrossRefPubMedGoogle Scholar
  20. Lehner P (1996) Handbook of ethological methods, 2nd edn. Cambridge University Press, CambridgeGoogle Scholar
  21. Mayntz D, Nielsen VH, Raubenheimer D, Hejlesen C (2009) Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison. Anim Behav 77:349–355CrossRefGoogle Scholar
  22. Michálek O, Petráková L, Pekár S (2017) Capture efficiency and trophic adaptations of a specialist and generalist predator: a comparison. Ecol Evol 7(8):2756–2766CrossRefPubMedPubMedCentralGoogle Scholar
  23. Molles MC Jr, Pietruszka RD (1987) Prey selection by a stonefly: the influence of hunger and prey size. Oecologia 72:473–478CrossRefPubMedGoogle Scholar
  24. Mukherjee S, Heithaus MR (2013) Dangerous prey and daring predators: a review. Biol Rev 88:550–563CrossRefPubMedGoogle Scholar
  25. Pekár S (2004) Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae). J Arachnol 32:31–34CrossRefGoogle Scholar
  26. Pekár S, Brabec M (2016) Modern analysis of biological data: generalized linear models in R. Masaryk University Press, BrnoGoogle Scholar
  27. Pekár S, Toft S (2015) Trophic specialisation in a predatory group: the case of prey-specialised spiders (Araneae). Biol Rev 90:744–761CrossRefPubMedGoogle Scholar
  28. Pekár S, Mayntz D, Ribeiro T, Herberstein ME (2010) Specialist ant-eating spiders selectively feed on different body parts to balance nutrient intake. Anim Behav 79:1301–1306CrossRefGoogle Scholar
  29. Pekár S, Šobotník J, Lubin Y (2011) Armoured spiderman: morphological and behavioural adaptations of a specialised araneophagous predator (Araneae: Palpimanidae). Naturwissenschaften 98:593–603CrossRefPubMedGoogle Scholar
  30. Pekár S, Šedo O, Líznarová E, Korenko S, Zdráhal Z (2014) David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey. Naturwissenschaften 101:533–540CrossRefPubMedGoogle Scholar
  31. Pekár S, García LF, Viera C (2017) Trophic niches and trophic adaptations of prey-specialized spiders from the Neotropics: a guide. In: Viera C, Gonzaga MO (eds) Behaviour and ecology of spiders: contributions from the Neotropical region. Springer, Cham, pp 247–274CrossRefGoogle Scholar
  32. Petráková L, Líznarová E, Pekár S, Haddad CR, Sentenská L, Symondson WOC (2015) Discovery of a monophagous true predator, a specialist termite-eating spider (Araneae: Ammoxenidae). Sci Rep 5:14013CrossRefPubMedPubMedCentralGoogle Scholar
  33. Pyke GH, Pulliam HR, Charnov E (1977) Optimal foraging: a selective review of theory and tests. Q Rev Biol 52:137–154CrossRefGoogle Scholar
  34. Raubenheimer D, Simpson SJ (2003) Nutrient balancing in grasshoppers: behavioural and physiological correlates of dietary breadth. J Exp Biol 206:1669–1681CrossRefPubMedGoogle Scholar
  35. Řezáč M, Pekár S, Lubin Y (2008) How oniscophagous spiders overcome woodlouse armour. J Zool 275:64–71CrossRefGoogle Scholar
  36. Sánchez-Ruiz A (2004) Current taxonomic status of the family Caponiidae (Arachnida, Araneae) in Cuba with the description of two new species. Rev Iber Aracnol 9:95–102Google Scholar
  37. Sanderson SL (1991) Functional stereotypy and feeding performance correlated in a trophic specialist. Funct Ecol 5:795–803CrossRefGoogle Scholar
  38. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefPubMedPubMedCentralGoogle Scholar
  39. Stephens DW, Krebs JR (1986) Foraging theory. Princeton University Press, PrincetonGoogle Scholar
  40. Toft S, Daiquin L, Mayntz D (2010) A specialized araneophagic predator’s short-term nutrient utilization depends on the macronutrient content of prey rather than on prey taxonomic affiliation. Physiol Entomol 35:317–327CrossRefGoogle Scholar
  41. Wheeler WC, Coddington JA, Crowley LM et al (2017) The spider tree of life: phylogeny of Araneae based on target-gene analyses from an extensive taxon sampling. Cladistics 33:574–616CrossRefGoogle Scholar
  42. Whitehouse MEA (1987) “Spider eat spider”: the predatory behavior of Rhomphaea sp. from New Zealand. J Arachnol 15:357–364Google Scholar
  43. Wigger E, Kuhn-Nentwig L, Nentwig W (2002) The venom optimisation hypothesis: a spider injects large venom quantities only into difficult prey types. Toxicon 40(6):749–752CrossRefPubMedGoogle Scholar
  44. Wignall A, Taylor P (2009) Alternative predatory tactics of an araneophagic assassin bug (Stenolemus bituberus). Acta Ethol 12:23–27CrossRefGoogle Scholar
  45. Yamada S, Boulding E (1998) Claw morphology, prey size selection and foraging efficiency in generalist and specialist shell-breaking crabs. J Exp Mar Bio Ecol 220:191–211CrossRefGoogle Scholar
  46. World Spider Catalog (2016) v17.5. Accessed 26 October 2016

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Grupo Multidisciplinario en Ecología para la AgriculturaCentro Universitario Regional Este, Universidad de la RepúblicaTreinta y TresUruguay
  2. 2.Sección Entomología, Facultad de CienciasUniversidad de la RepúblicaMontevideoUruguay
  3. 3.Laboratorio de Ecología del ComportamientoInstituto de Investigaciones Biológicas Clemente EstableMontevideoUruguay
  4. 4.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic

Personalised recommendations