The Science of Nature

, 105:17 | Cite as

Colour change in a structural ornament is related to individual quality, parasites and mating patterns in the blue tit

  • E. P. Badás
  • J. Martínez
  • J. Rivero-de Aguilar
  • C. Ponce
  • M. Stevens
  • S. Merino
Original Paper

Abstract

Carry-over effects refer to processes that occur in one season and influence fitness in the following. In birds, two costly activities, namely reproduction and moult, are restricted to a small time window, and sometimes overlap. Thus, colour in newly moulted feathers is likely to be affected by the costs of reproduction. Using models of bird vision we investigated male colour change in a free-living population of blue tits (Cyanistes caeruleus) in three sampling occasions: spring 1, winter and spring 2. We related crown, tail, breast and cheek feather colouration after the moult (winter) to the intensity of infections by blood parasites during reproduction (spring 1). In the following spring (spring 2), we explored mating patterns with respect to changes in feather colour (springs 1 vs. 2). Males that were less intensely infected by the malaria parasite Plasmodium while breeding showed purer white cheek feathers in winter, which may indicate higher feather quality. Increased brightness in the white cheek was associated with better body condition during reproduction. In the following season, males with brighter cheeks paired with females that had noticeably brighter cheek patches compared to the male’s previous mate. These results suggest that the conditions experienced during reproduction are likely to affect moult and thus feather colouration, at least in the white patch. High quality individuals may allocate resources efficiently during reproduction increasing future reproductive success through variation in mating patterns. Carry-over effects from reproduction might extend not only to the non-breeding phase, but also to the following breeding season.

Keywords

Achromatic colouration Body mass Life-history theory Sexual selection Signalling Structural colouration 

Notes

Acknowledgements

We thank ‘El Ventorrillo’ field station for the use of their facilities and several field assistants who helped during fieldwork. We are indebted to L. M. Carrascal for his comments on the statistical analyses.

Funding information

This study was funded by projects CGL2012-40026-C02-01 and CGL2012-40026-C02-02 from the MEC (Ministerio de Economia y Competitividad).

Compliance with ethical standards

The Junta de Castilla y León authorised the ringing and handling of blue tits in the study area (protocol number EP/SG/193/2013). All researchers manipulating birds held a specific ringing permit. Work in the field area was done with permission from J. Donés (Director of ‘Montes de Valsain’).

Supplementary material

114_2018_1539_MOESM1_ESM.docx (3.4 mb)
ESM 1 (DOCX 3494 kb)

References

  1. Asghar M, Hasselquist D, Zehtindjiev P, Westerdahl H, Bensch S (2015) Hidden costs of infection: chronic malaria accelerates telomere degradation and senescence in wild birds. Science 347:9–12CrossRefGoogle Scholar
  2. Badás EP, Martínez J, Rivero-de Aguilar J, Miranda F, Figuerola J, Merino S (2015) Ageing and reproduction: antioxidant supplementation alleviates telomere loss in wild birds. J Evol Biol 28(4):896–905.  https://doi.org/10.1111/jeb.12615 CrossRefPubMedGoogle Scholar
  3. Badás EP, Martínez J, Rivero-de Aguilar J, Stevens M, van der Velde M, Komdeur J, Merino S (2017) Eggshell pigmentation in the blue tit: male quality matters. Behav Ecol Sociobiol 71(3):57.  https://doi.org/10.1007/s00265-017-2286-4 CrossRefGoogle Scholar
  4. Bates D, Mächler M, Bolker B, Walker S (2014) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48Google Scholar
  5. Bize P, Criscuolo F, Metcalfe NB, Nasir L, Monaghan P (2009) Telomere dynamics rather than age predict life expectancy in the wild. Proc R Soc B Biol Sci 276(1662):1679–1683.  https://doi.org/10.1098/rspb.2008.1817 CrossRefGoogle Scholar
  6. Blount JD, Vitikainen EIK, Stott I, Cant MA (2016) Oxidative shielding and the cost of reproduction. Biol Rev 91(2):483–497.  https://doi.org/10.1111/brv.12179 CrossRefPubMedGoogle Scholar
  7. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens M, White HH, Jada-Simone S (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24(3):127–135.  https://doi.org/10.1016/j.tree.2008.10.008 CrossRefPubMedGoogle Scholar
  8. Cantarero A, Laaksonen T, Järvistö PE, López-Arrabé J, Gil D, Moreno J (2017) Testosterone levels in relation to size and UV reflectance of achromatic plumage traits of female pied flycatchers. J Avian Biol 48(2):243–254.  https://doi.org/10.1111/jav.01032 CrossRefGoogle Scholar
  9. Cohen J (1998) Statistical Power Analysis for the Behavioral Sciences. Dep. Psychol. New York Univ. New York, New York. 2nd Edition, 590 pp.Google Scholar
  10. Cuthill IC (2006) Color perception. In: Hill GE, McGraw KJ (eds) Bird coloration. I. Methods and mechanisms. Harvard University Press, Cambridge, MA, pp 3–40Google Scholar
  11. Cyr NE, Wikelski M, Romero LM (2008) Increased energy expenditure but decreased stress responsiveness during molt. Physiol Biochem Zool 81(4):452–462.  https://doi.org/10.1086/589547 CrossRefPubMedGoogle Scholar
  12. Dawson A, Hinsley SA, Ferns PN, Bonser RHC, Eccleston L (2000) Rate of moult affects feather quality: a mechanism linking current reproductive effort to future survival. Proc R Soc London B Biol Sci 267(1457):2093–2098.  https://doi.org/10.1098/rspb.2000.1254 CrossRefGoogle Scholar
  13. del Cerro S, Merino S, Martínez-de la Puente J, Lobato E, Ruiz-de-Castañeda R, Rivero-de Aguilar J, Martínez J, Morales J, Tomás G, Moreno J (2010) Carotenoid-based plumage colouration is associated with blood parasite richness and stress protein levels in blue tits (Cyanistes caeruleus). Oecologia 162(4):825–835.  https://doi.org/10.1007/s00442-009-1510-y CrossRefPubMedGoogle Scholar
  14. Delhey K, Peters A, Johnsen A, Kempenaers B (2006) Seasonal changes in blue tit crown color: do they signal individual quality? Behav Ecol 17(5):790–798.  https://doi.org/10.1093/beheco/arl012 CrossRefGoogle Scholar
  15. Delhey K, Burger C, Fiedler W, Peters A (2010) Seasonal changes in colour: a comparison of structural, melanin-and carotenoid-based plumage colours. PLoS One 5(7):e11582.  https://doi.org/10.1371/journal.pone.0011582 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Dhondt AA, Kempenaers B, Clobert J (1998) Sparrowhawk Accipiter nisus predation and blue tit Parus caeruleus adult annual survival rate. Ibis 140:580–584CrossRefGoogle Scholar
  17. Doucet SM, Montgomerie R (2003) Multiple sexual ornaments in satin bowerbirds: ultraviolet plumage and bowers signal different aspects of male quality. Behav Ecol 14(4):503–509.  https://doi.org/10.1093/beheco/arg035 CrossRefGoogle Scholar
  18. Doucet SM, Mennill DJ, Montgomerie R, Boag PT, Ratcliffe LM (2005) Achromatic plumage reflectance predicts reproductive success in male black-capped chickadees. Behav Ecol 16(1):218–222.  https://doi.org/10.1093/beheco/arh154 CrossRefGoogle Scholar
  19. Doutrelant C, Grégoire A, Midamegbe A, Lambrechts M, Perret P (2012) Female plumage coloration is sensitive to the cost of reproduction. An experiment in blue tits. J Anim Ecol 81(1):87–96.  https://doi.org/10.1111/j.1365-2656.2011.01889.x CrossRefPubMedGoogle Scholar
  20. Dreiss AN, Roulin A (2010) Age-related change in melanin-based coloration: females that become more female-like and males more male-like with age perform better in barn owls (Tyto alba). Biol J Linn Soc 101(3):689–704.  https://doi.org/10.1111/j.1095-8312.2010.01503.x CrossRefGoogle Scholar
  21. Dyck J (1976) Structural colours. Proc Int Ornithol Congr 16:426–437Google Scholar
  22. Endler JA, Mielke PW (2005) Comparing entire color patterns as birds see them. Biol J Linn Soc 86(4):405–431.  https://doi.org/10.1111/j.1095-8312.2005.00540.x CrossRefGoogle Scholar
  23. Evans SR, Hinks AE, Wilkin TA, Sheldon BC (2010) Age, sex and beauty: methodological dependence of age- and sex-dichromatism in the great tit Parus major. Biol J Linn Soc 101(4):777–796.  https://doi.org/10.1111/j.1095-8312.2010.01548.x CrossRefGoogle Scholar
  24. Fargallo JA, Merino S (1999) Brood size manipulation modifies the intensity of the infection by Haematozoa in female blue tits Parus caeruleus. Ardea 87:261–268Google Scholar
  25. Fitze PS, Richner H (2002) Differential effects of a parasite on ornamental structures based on melanins and carotenoids. Behav Ecol 13(3):401–407.  https://doi.org/10.1093/beheco/13.3.401 CrossRefGoogle Scholar
  26. Fitzpatrick S (1998) Colour schemes for birds: structural coloration and signals of quality in feathers. Ann Zool Fennici 35:67–77Google Scholar
  27. Fox J (2002) Bootstrapping regression models. Ann Stat 9:1218–1228Google Scholar
  28. Fox J, Weisberg S (2011) An {R} companion to applied regression, Second Edi edn. Sage, CAGoogle Scholar
  29. Galván I (2010) Plumage coloration can be perceived as a multiple condition dependent signal by great tits Parus major. Ibis (Lond 1859) 152(2):359–367.  https://doi.org/10.1111/j.1474-919X.2009.00999.x CrossRefGoogle Scholar
  30. Griffith SC (2000) A trade-off between reproduction and a condition-dependent sexually selected ornament in the house sparrow Passer domesticus. Proc R Soc B Biol Sci 267(1448):1115–1119.  https://doi.org/10.1098/rspb.2000.1116 CrossRefGoogle Scholar
  31. Griggio M, Serra L, Licheri D, Campomori C, Pilastro A (2009) Moult speed affects structural feather ornaments in the blue tit. J Evol Biol 22(4):782–792.  https://doi.org/10.1111/j.1420-9101.2009.01700.x CrossRefPubMedGoogle Scholar
  32. Griggio M, Hoi H, Pilastro A (2010) Plumage maintenance affects ultraviolet colour and female preference in the budgerigar. Behav Process 84(3):739–744.  https://doi.org/10.1016/j.beproc.2010.05.003 CrossRefGoogle Scholar
  33. Griggio M, Valera F, Casas-Crivillé A, Hoi H, Barbosa A (2011) White tail markings are an indicator of quality and affect mate preference in rock sparrows. Behav Ecol Sociobiol 65(4):655–664.  https://doi.org/10.1007/s00265-010-1067-0 CrossRefGoogle Scholar
  34. Gunnarsson TG, Gill JA, Atkinson PW et al (2006) Population-scale drivers of individual arrival times in migratory birds. J Anim Ecol 75(5):1119–1127.  https://doi.org/10.1111/j.1365-2656.2006.01131.x CrossRefPubMedGoogle Scholar
  35. Gustafsson L, Qvarnström A, Sheldon BC (1995) Trade-offs between life-history traits and a secondary sexual character in male collared flycatchers. Nature 375(6529):311–313.  https://doi.org/10.1038/375311a0 CrossRefGoogle Scholar
  36. Halekoh U, Højsgaard S (2014) A Kenward-Roger approximation and parametric bootstrap methods for tests in linear mixed models—the R package pbkrtest. J Stat Softw 59:1–32CrossRefGoogle Scholar
  37. Hanssen SA, Folstad I, Erikstad KE (2003) Reduced immunocompetence and cost of reproduction in common eiders. Oecologia 136(3):457–464.  https://doi.org/10.1007/s00442-003-1282-8 CrossRefPubMedGoogle Scholar
  38. Hanssen SA, Folstad I, Erikstad KE (2006) White plumage reflects individual quality in female eiders. Anim Behav 71(2):337–343.  https://doi.org/10.1016/j.anbehav.2005.04.021 CrossRefGoogle Scholar
  39. Harrison XA, Blount JD, Inger R, Norris DR, Bearhop S (2011) Carry-over effects as drivers of fitness differences in animals. J Anim Ecol 80(1):4–18.  https://doi.org/10.1111/j.1365-2656.2010.01740.x CrossRefPubMedGoogle Scholar
  40. Harshman LG, Zera AJ (2007) The cost of reproduction: the devil in the details. Trends Ecol Evol 22(2):80–86.  https://doi.org/10.1016/j.tree.2006.10.008 CrossRefPubMedGoogle Scholar
  41. Hart NS, Partridge JC, Cuthill IC, Bennett ATD (2000) Visual pigments, oil droplets, ocular media and cone photoreceptor distribution in two species of passerine bird: the blue tit (Parus caeruleus L.) and the blackbird (Turdus merula L.) J Comp Physiol A Sensory, Neural, Behav Physiol 186:375–387CrossRefGoogle Scholar
  42. Hegyi G, Szigeti B, Török J, Eens M (2007) Melanin, carotenoid and structural plumage ornaments: information content and role in great tits Parus major. J Avian Biol 38(6):698–708.  https://doi.org/10.1111/j.2007.0908-8857.04075.x CrossRefGoogle Scholar
  43. Hemborg C, Sanz J, Lundberg A (2001) Effects of latitude on the trade-off between reproduction and moult: a long-term study with pied flycatcher. Oecologia 129(2):206–212.  https://doi.org/10.1007/s004420100710 CrossRefPubMedGoogle Scholar
  44. Hill GE (2006a) Female mate choice for ornamental coloration. In: Hill GE, KJ MG (eds) Bird coloration. II. Function and evolution. Harvard University Press, Cambridge, MA, pp 137–200Google Scholar
  45. Hill GE (2006b) Environmental regulation of ornamental coloration. In: Hill GE, KJ MG (eds) Bird coloration. I. Mechanisms and measurements. Harvard University Press, Cambridge, MA, pp 507–560Google Scholar
  46. Hill GE, McGraw KJ (2006) Bird coloration, volume 1, Mechanisms and measurements. Harvard University Press, CambridgeGoogle Scholar
  47. Hill GE, Doucet SM, Buchholz R (2005) The effect of coccidial infection on iridescent plumage coloration in wild turkeys. Anim Behav 69(2):387–394.  https://doi.org/10.1016/j.anbehav.2004.03.013 CrossRefGoogle Scholar
  48. Jenni L, Winkler R (1994) Moult and ageing of European passerines. Academic Press, LondonGoogle Scholar
  49. Johnsen A, Delhey K, Andersson S, Kempenaers B (2003) Plumage colour in nestling blue tits: sexual dichromatism, condition dependence and genetic effects. Proc R Soc Biol Sci Ser B 270(1521):1263–1270.  https://doi.org/10.1098/rspb.2003.2375 CrossRefGoogle Scholar
  50. Johnson JB, Omland KS (2004) Model selection in ecology and evolution. Trends Ecol Evol 19(2):101–108.  https://doi.org/10.1016/j.tree.2003.10.013 CrossRefPubMedGoogle Scholar
  51. Kemp DJ, Herberstein ME, Fleishman LJ, Endler JA, Bennett ATD, Dyer AG, Hart NS, Marshall J, Whiting MJ (2015) An integrative framework for the appraisal of coloration in nature. Am Nat 185(6):705–724.  https://doi.org/10.1086/681021 CrossRefPubMedGoogle Scholar
  52. Knowles SCL, Palinauskas V, Sheldon BC (2010) Chronic malaria infections increase family inequalities and reduce parental fitness: experimental evidence from a wild bird population. J Evol Biol 23(3):557–569.  https://doi.org/10.1111/j.1420-9101.2009.01920.x CrossRefPubMedGoogle Scholar
  53. Komdeur J, Oorebeek M, van Overveld T, Cuthill I (2005) Mutual ornamentation, age, and reproductive performance in the European starling. Behav Ecol 16(4):805–817.  https://doi.org/10.1093/beheco/ari059 CrossRefGoogle Scholar
  54. Lind O (2016) Colour vision and background adaptation in a passerine bird, the zebra finch (Taeniopygia guttata). Royal Society Open Science 3(9):160383.  https://doi.org/10.1098/rsos.160383 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Loiseau C, Zoorob R, Garnier S, Birard J, Federici P, Julliard R, Sorci G (2008) Antagonistic effects of a MHC class I allele on malaria-infected house sparrows. Ecol Lett 11(3):258–265.  https://doi.org/10.1111/j.1461-0248.2007.01141.x CrossRefPubMedGoogle Scholar
  56. López-Arrabé J, Cantarero A, Pérez-Rodríguez L, Palma A, Moreno J (2014) Plumage ornaments and reproductive investment in relation to oxidative status in the Pied Flycatcher Ficedula hypoleuca iberiae. Can J Zool 92(12):1019–1027.  https://doi.org/10.1139/cjz-2014-0199 CrossRefGoogle Scholar
  57. Mahr K, Griggio M, Granatiero M, Hoi H (2012) Female attractiveness affects paternal investment: experimental evidence for male differential allocation in blue tits. Front Zool 9(1):14.  https://doi.org/10.1186/1742-9994-9-14 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Martínez-de la Puente J, Merino S, Tomás G et al (2010) The blood parasite Haemoproteus reduces survival in a wild bird: a medication experiment. Biol Lett 6(5):663–665.  https://doi.org/10.1098/rsbl.2010.0046 CrossRefGoogle Scholar
  59. McGraw KJ, Gregory AJ (2004) Carotenoid pigments in male American goldfinches: what is the optimal biochemical strategy for becoming colourful? Biol J Linn Soc 83(2):273–280.  https://doi.org/10.1111/j.1095-8312.2004.00388.x CrossRefGoogle Scholar
  60. McGraw KJ, Mackillop EA, Dale J, Hauber ME (2002) Different colors reveal different information: how nutritional stress affects the expression of melanin- and structurally based ornamental plumage. J Exp Biol 205(Pt 23):3747–3755PubMedGoogle Scholar
  61. Merino S, Barbosa A (1997) Haematocrit values in chinstrap penguins (Pygoscelis antarctica): variation with age and reproductive status. Polar Biol 17(1):14–16.  https://doi.org/10.1007/s003000050099 CrossRefGoogle Scholar
  62. Merino S, Potti J, Fargallo JA (1997) Blood parasites of passerine birds from central Spain. J Wildl Dis 33(3):638–641.  https://doi.org/10.7589/0090-3558-33.3.638 CrossRefPubMedGoogle Scholar
  63. Merino S, Moreno J, José Sanz J, Arriero E (2000) Are avian blood parasites pathogenic in the wild? A medication experiment in blue tits (Parus caeruleus). Proc R Soc London Ser B Biol Sci 267(1461):2507–2510.  https://doi.org/10.1098/rspb.2000.1312 CrossRefGoogle Scholar
  64. Metcalfe NB, Monaghan P (2001) Compensation for a bad start: grow now, pay later? Trends Ecol Evol 16(5):254–260.  https://doi.org/10.1016/S0169-5347(01)02124-3 CrossRefPubMedGoogle Scholar
  65. Møller AP, Pomiankowski A (1993) Why have birds got multiple sexual ornaments? Behav Ecol Sociobiol 32:167–176Google Scholar
  66. Møller AP, Merino S, Soler JJ et al (2013) Assessing the effects of climate on host-parasite interactions: a comparative study of European birds and their parasites. PLoS One 8:1–11Google Scholar
  67. Morales J, Moreno J, Merino S et al (2007) Early moult improves local survival and reduces reproductive output in female pied flycatchers. Ecoscience 14(1):31–39.Google Scholar
  68. Moreno J, Sanz J, Merino S, Arriero E (2001) Daily energy expenditure and cell-mediated immunity in pied flycatchers while feeding nestlings: interaction with moult. Oecologia 129(4):492–497.  https://doi.org/10.1007/s004420100767 CrossRefPubMedGoogle Scholar
  69. Nacher M, Singhasivanon P, Yimsamran S, Manibunyong W, Thanyavanich N, Wuthisen P, Looareesuwan S (2002) Intestinal helminth infections are associated with increased incidence of Plasmodium falciparum malaria in Thailand. J Parasitol 88(1):55–58.Google Scholar
  70. Nilsson J-A, Svensson E (1996) The cost of reproduction: a new link between current reproductive effort and future reproductive success. Proc R Soc London B: Biol Sci 263(1371):711–714.  https://doi.org/10.1098/rspb.1996.0106 CrossRefGoogle Scholar
  71. Orledge JM, Blount JD, Hoodless AN, Royle NJ (2012) Antioxidant supplementation during early development reduces parasite load but does not affect sexual ornament expression in adult ring-necked pheasants. Funct Ecol 26(3):688–700.  https://doi.org/10.1111/j.1365-2435.2012.01977.x CrossRefGoogle Scholar
  72. Örnborg J, Andersson S, Griffith SC, Sheldon BC (2002) Seasonal changes in a ultraviolet structural colour signal in blue tits, Parus caeruleus. Biol J Linn Soc 76(2):237–245.  https://doi.org/10.1046/j.1095-8312.2002.00061.x CrossRefGoogle Scholar
  73. Osorio D, Vorobyev M, Jones C (1999) Colour vision of domestic chicks. J Exp Biol 202(Pt 21):2951–2959PubMedGoogle Scholar
  74. Partan S, Marler P (1999) Communication goes multimodal. Science 283(5406):1272–1273.  https://doi.org/10.1126/science.283.5406.1272 CrossRefPubMedGoogle Scholar
  75. Prum RO (2006) Anatomy, physics and evolution of structural colors. In: Hill GE, KJ MG (eds) Bird coloration. I. Mechanisms and measurements. Harvard University Press, Cambridge, MA, pp 295–353Google Scholar
  76. Robb GN, McDonald RA, Chamberlain DE, Reynolds SJ, Harrison TJE, Bearhop S (2008) Winter feeding of birds increases productivity in the subsequent breeding season. Biol Lett 4(2):220–223.  https://doi.org/10.1098/rsbl.2007.0622 CrossRefPubMedPubMedCentralGoogle Scholar
  77. Ruiz-De-Castañeda R, Burtt EH, González-Braojos S, Moreno J (2015) Bacterial degradability of white patches on primary feathers is associated with breeding date and parental effort in a migratory bird. Ibis 157(4):871–876.  https://doi.org/10.1111/ibi.12281 CrossRefGoogle Scholar
  78. Saks L, McGraw K, Horak P (2003) How feather colour reflects its carotenoid content. Funct Ecol 17(4):555–561.  https://doi.org/10.1046/j.1365-2435.2003.00765.x CrossRefGoogle Scholar
  79. Santos ESA, Nakagawa S (2012) The costs of parental care: a meta-analysis of the trade-off between parental effort and survival in birds. J Evol Biol 25(9):1911–1917.  https://doi.org/10.1111/j.1420-9101.2012.02569.x CrossRefPubMedGoogle Scholar
  80. Sanz JJ (1999) Seasonal variation in reproductive success and post-nuptial moult of blue tits in southern Europe: an experimental study. Oecologia 121(3):377–382.  https://doi.org/10.1007/s004420050942 CrossRefPubMedGoogle Scholar
  81. Sanz JJ, Moreno J, Merino S, Tomas G (2004) A trade-off between two resource-demanding functions: post-nuptial moult and immunity during reproduction in male pied flycatchers. J Anim Ecol 73(3):441–447.  https://doi.org/10.1111/j.0021-8790.2004.00815.x CrossRefGoogle Scholar
  82. Senar JC (2002) Great tits (Parus major) reduce body mass in response to wing area reduction: a field experiment. Behav Ecol 13(6):725–727.  https://doi.org/10.1093/beheco/13.6.725 CrossRefGoogle Scholar
  83. Serra L, Griggio M, Licheri D, Pilastro A (2007) Moult speed constrains the expression of a carotenoid-based sexual ornament. J Evol Biol 20(5):2028–2034.  https://doi.org/10.1111/j.1420-9101.2007.01360.x CrossRefPubMedGoogle Scholar
  84. Seutin G (1994) Plumage redness in redpoll finches does not reflect hemoparasitic infection. Oikos 70(2):280–286.  https://doi.org/10.2307/3545639 CrossRefGoogle Scholar
  85. Shawkey MD, Pillai SR, Hill GE, Siefferman LM, Roberts SR (2007) Bacteria as an agent for change in structural plumage color: correlational and experimental evidence. Am Nat 169:112–121CrossRefGoogle Scholar
  86. Siddiqi A, Cronin T, Loew E et al (2004) Interspecific and intraspecific views of color signals in the strawberry poison frog Dendrobates pumilio. J Exp Biol 207(14):2471–2485.  https://doi.org/10.1242/jeb.01047 CrossRefPubMedGoogle Scholar
  87. Siefferman L, Hill G (2005) Evidence for sexual selection on structural plumage coloration in female eastern bluebirds (Sialia sialis). Evolution 59(8):1819–1828.  https://doi.org/10.1111/j.0014-3820.2005.tb01828.x CrossRefPubMedGoogle Scholar
  88. Smith HG, Nilsson J-Å (1987) Intraspecific variation in migratory pattern of a partial migrant, the blue tit (Parus caeruleus): an evaluation of different hypotheses. Auk 104(1):109–115.  https://doi.org/10.2307/4087239 CrossRefGoogle Scholar
  89. Sorensen M, Hipfner J, Kyser T, Norris D (2009) Carry-over effects in a Pacific seabird: stable isotope evidence that pre-breeding diet quality influences reproductive success. J Anim 78:460–467Google Scholar
  90. Spottiswoode CN, Stevens M (2011) How to evade a coevolving brood parasite: egg discrimination versus egg variability as host defences. Proc R Soc London B Biol Sci 278(1724):3566–3573.  https://doi.org/10.1098/rspb.2011.0401 CrossRefGoogle Scholar
  91. Stearns SC (1992) The evolution of life histories. Oxford University Press, OxfordGoogle Scholar
  92. Stevens M (2011) Avian vision and egg colouration: concepts and measurements. Avian Biol Res 4(4):168–184.  https://doi.org/10.3184/175815511X13207790177958 CrossRefGoogle Scholar
  93. Stevens M, Stoddard M, Higham J (2009) Studying primate color: towards visual system-dependent methods. Int J Primatol 30(6):893–917.  https://doi.org/10.1007/s10764-009-9356-z CrossRefGoogle Scholar
  94. Stevens M, Lown AE, Wood LE (2014) Color change and camouflage in juvenile shore crabs Carcinus maenas. Front Ecol Evol 2:1–14CrossRefGoogle Scholar
  95. Stoddard MC, Prum RO (2008) Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new world buntings. Am Nat 171(6):755–776.  https://doi.org/10.1086/587526 CrossRefPubMedGoogle Scholar
  96. Sugiura N (1978) Further analysts of the data by akaike’ s information criterion and the finite corrections. Commun Stat - Theory Methods 7(1):13–26.  https://doi.org/10.1080/03610927808827599 CrossRefGoogle Scholar
  97. Svensson L (1992) Identification Guide to European Passerines. Natural History Museum, StockholmGoogle Scholar
  98. Svensson E, Nilsson J-Å (1995) The trade-off between molt and parental care: a sexual conflict in the blue tit? Behav Ecol 8:92–98CrossRefGoogle Scholar
  99. Valkiūnas G (2005) Avian malaria parasites and other Haemosporidia. New York, USAGoogle Scholar
  100. Vorobyev M, Osorio D, Bennett ATD, Marshall NJ, Cuthill IC (1998) Tetrachromacy, oil droplets and bird plumage colours. J Comp Physiol A Neuroethol Sensory, Neural, Behav Physiol 183(5):621–633.  https://doi.org/10.1007/s003590050286 CrossRefGoogle Scholar
  101. Zanollo V, Griggio M, Robertson J, Kleindorfer S (2012) The number and coloration of white flank spots predict the strength of a cutaneous immune response in female Diamond Firetails, Stagonopleura guttata. J Ornithol 153(4):1233–1244.  https://doi.org/10.1007/s10336-012-0855-x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • E. P. Badás
    • 1
  • J. Martínez
    • 2
  • J. Rivero-de Aguilar
    • 2
  • C. Ponce
    • 1
  • M. Stevens
    • 3
  • S. Merino
    • 1
  1. 1.Department of Evolutionary Ecology, National Museum of Natural SciencesMadridSpain
  2. 2.Department of Biomedicine and BiotechnologyUniversity of Alcalá de HenaresMadridSpain
  3. 3.Centre for Ecology and ConservationUniversity of ExeterCornwallUK

Personalised recommendations