The Science of Nature

, 105:11 | Cite as

The neurobiology of climate change

Concepts & Synthesis

Abstract

Directional climate change (global warming) is causing rapid alterations in animals’ environments. Because the nervous system is at the forefront of animals’ interactions with the environment, the neurobiological implications of climate change are central to understanding how individuals, and ultimately populations, will respond to global warming. Evidence is accumulating for individual level, mechanistic effects of climate change on nervous system development and performance. Climate change can also alter sensory stimuli, changing the effectiveness of sensory and cognitive systems for achieving biological fitness. At the population level, natural selection forces stemming from directional climate change may drive rapid evolutionary change in nervous system structure and function.

Keywords

Brain development Brain evolution Marine acidification Migration Neuroecology Phenology Sensory stimuli TRP receptors 

Notes

Acknowledgements

I thank five anonymous reviewers for making thoughtful and valuable comments on the manuscript.

References

  1. Aiello LC, Wheeler P (1995) The expensive-tissue hypothesis: the brain and the digestive system in human and primate evolution. Curr Anthropol 36(2):199–221.  https://doi.org/10.1086/204350 CrossRefGoogle Scholar
  2. Albright TP, Mutiibwa D, Gerson AR, Smith EK, Talbot WA, O’Neill JJ, McKechnie AE, Wolf BO (2017) Mapping evaporative water loss in desert passerines reveals an expanding threat of lethal dehydration. Proc Nat Acad Sci 114(9):2283–2288.  https://doi.org/10.1073/pnas.1613625114 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Amiel JJ, Bao S, Shine R (2017) The effects of incubation temperature on the development of the cortical forebrain in a lizard. Anim Cogn 20(1):117–125.  https://doi.org/10.1007/s10071-016-0993-2 CrossRefPubMedGoogle Scholar
  4. Aublet JF, Festa-Bianchet M, Bergero D, Bassano B (2009) Temperature constraints on foraging behaviour of male Alpine ibex (Capra ibex) in summer. Oecologia 159(1):237–247.  https://doi.org/10.1007/s00442-008-1198-4 CrossRefPubMedGoogle Scholar
  5. Avgar T, Mosser A, Brown GS, Fryxell JM (2013) Environmental and individual drivers of animal movement patterns across a wide geographical gradient. J Anim Ecol 82(1):96–106.  https://doi.org/10.1111/j.1365-2656.2012.02035.x CrossRefPubMedGoogle Scholar
  6. Badeck FW, Bondeau A, Bottcher K, Doktor D, Lucht W, Schaber J, Sitch S (2004) Responses of spring phenology to climate change. New Phytol 162(2):295–309.  https://doi.org/10.1111/j.1469-8137.2004.01059.x CrossRefGoogle Scholar
  7. Bartual A, Ortega MJ (2013) Temperature differentially affects the persistence of polyunsaturated aldehydes in seawater. Environ Chem 10(5):403–408.  https://doi.org/10.1071/EN13055 CrossRefGoogle Scholar
  8. Bautista DM, Siemens J, Glazer JM, Tsuruda PR, Basbaum AI, Stucky CL, Jordt SE, Julius D (2007) The menthol receptor TRPM8 is the principal detector of environmental cold. Nature 448(7150):204–208.  https://doi.org/10.1038/nature05910 CrossRefPubMedGoogle Scholar
  9. Berti R, Durand JP, Becchi S, Brizzi R, Keller N, Ruffat G (2001) Eye degeneration in the blind cave-dwelling fish Phreatichthys andruzzii. Can J Zool 79(7):1278–1285.  https://doi.org/10.1139/z01-084 CrossRefGoogle Scholar
  10. Bozinovic F, Portner HO (2015) Physiological ecology meets climate change. Ecol Evol 5(5):1025–1030.  https://doi.org/10.1002/ece3.1403 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bradshaw WE, Holzapfel CM (2010) Light, time, and the physiology of biotic response to rapid climate change in animals. Annu Rev Physiol 72(1):147–166.  https://doi.org/10.1146/annurev-physiol-021909-135837 CrossRefPubMedGoogle Scholar
  12. Bulova S, Purce K, Khodak P, Sulger E, O’Donnell S (2016) Into the black and back: the ecology of brain investment in Neotropical army ants (Formicidae: Dorylinae). Sci Nat 103(3–4):31.  https://doi.org/10.1007/s00114-016-1353-4
  13. Calisi RM, Chintamen S, Ennin E, Kriegsfeld L, Rosenblum EB (2017) Neuroanatomical changes related to a changing environment in lesser earless lizards. J Herpetol 51(2):258–262.  https://doi.org/10.1670/16-056 CrossRefGoogle Scholar
  14. Catania KC (2000) Cortical organization in insectivora: the parallel evolution of the sensory periphery and the brain. Brain Behav Evol 55(6):311–321.  https://doi.org/10.1159/000006666 CrossRefPubMedGoogle Scholar
  15. Chen IC, Hill JK, Ohlemüller R et al (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026.  https://doi.org/10.1126/science.1206432 CrossRefPubMedGoogle Scholar
  16. Clapham DE (2003) TRP channels as cellular sensors. Nature 426(6966):517–524.  https://doi.org/10.1038/nature02196 CrossRefPubMedGoogle Scholar
  17. Clark TD, Roche DG, Binning SA, Ben Speers-Roesch B, Sundin J (2017) Maximum thermal limits of coral reef damselfishes are size dependent and resilient to near-future ocean acidification. J Exp Biol 220(19):3519–3526.  https://doi.org/10.1242/jeb.162529 CrossRefPubMedGoogle Scholar
  18. Cotton PA (2003) Avian migration phenology and global climate change. Proc Natl Acad Sci 100(21):12219–12222.  https://doi.org/10.1073/pnas.1930548100 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Cripps IL, Munday PL, McCormick MI (2011) Ocean acidification affects prey detection by a predatory reef fish. PLoS One 6(7):e22736.  https://doi.org/10.1371/journal.pone.0022736 CrossRefPubMedPubMedCentralGoogle Scholar
  20. DeGregorio BA, Westervelt JD, Weatherhead PJ, Sperry JH (2015) Indirect effect of climate change: shifts in ratsnake behavior alter intensity and timing of avian nest predation. Ecol Model 312:239–246.  https://doi.org/10.1016/j.ecolmodel.2015.05.031 CrossRefGoogle Scholar
  21. Dhaka A, Viswanath V, Patapoutian A (2006) TRP ion channels and temperature sensation. Annu Rev Neurosci 29(1):135–161.  https://doi.org/10.1146/annurev.neuro.29.051605.112958 CrossRefPubMedGoogle Scholar
  22. Dixson DL, Jennings AR, Atema J, Munday PL (2015) Odor tracking in sharks is reduced under future ocean acidification conditions. Glob Chang Biol 21(4):1454–1462.  https://doi.org/10.1111/gcb.12678 CrossRefPubMedGoogle Scholar
  23. Doherty TJ, Clayton S (2011) The psychological impacts of global climate change. Am Psychol 66(4):265–276.  https://doi.org/10.1037/a0023141 CrossRefPubMedGoogle Scholar
  24. Esbaugh AJ (2017) Physiological implications of ocean acidification for marine fish: emerging patterns and new insights. J Comp Physiol B.  https://doi.org/10.1007/s00360-017-1105-6
  25. Fink P (2007) Ecological functions of volatile organic compounds in aquatic systems. Mar Freshw Behav Physiol 40(3):155–168.  https://doi.org/10.1080/10236240701602218 CrossRefGoogle Scholar
  26. Franks SJ, Hoffmann AA (2012) Genetics of climate change adaptation. Annu Rev Genet 46(1):185–208.  https://doi.org/10.1146/annurev-genet-110711-155511 CrossRefPubMedGoogle Scholar
  27. Gifford R (2011) The dragons of inaction: psychological barriers that limit climate change mitigation and adaptation. Am Psychol 66(4):290–302.  https://doi.org/10.1037/a0023566 CrossRefPubMedGoogle Scholar
  28. Gordo O (2007) Why are bird migration dates shifting? A review of weather and climate effects on avian migratory phenology. Clim Res 35:37–58.  https://doi.org/10.3354/cr00713 CrossRefGoogle Scholar
  29. Grant PR, Grant BR, Huey RB, Johnson MTJ, Knoll AH, Schmitt J (2017) Evolution caused by extreme events. Philos Trans R Soc B 372(1723):20160146.  https://doi.org/10.1098/rstb.2016.0146 CrossRefGoogle Scholar
  30. Groh C, Tautz J, Roessler W (2004) Synaptic organization in the adult honey-bee brain is influenced by brood-temperature control during pupal development. Proc Natl Acad Sci U S A 101(12):4268–4273.  https://doi.org/10.1073/pnas.0400773101 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Guerra PA, Reppert SM (2013) Coldness triggers northward flight in remigrant monarch butterflies. Curr Biol 23(5):419–423.  https://doi.org/10.1016/j.cub.2013.01.052 CrossRefPubMedGoogle Scholar
  32. Guerra PA, Reppert SM (2015) Sensory basis of lepidopteran migration: focus on the monarch butterfly. Curr Opin Neurobiol 34:20–28.  https://doi.org/10.1016/j.conb.2015.01.009 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454(7201):217–220.  https://doi.org/10.1038/nature07001 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hamilton TJ, Holcombe A, Tresguerres M (2014) CO2 induced ocean acidification increases anxiety in Rockfish via alteration of GABA-A receptor functioning. Proc R Soc B 281:20132509CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hamilton SL, Logan CA, Fennie HW, Sogard SM, Barry JP, Makukhov AD, Tobosa LR, Boyer K, Lovera CF, Bernardi G (2017) Species-specific responses of juvenile rockfish to elevated pCO2: from behavior to genomics. PLoS One 12(1):e0169670.  https://doi.org/10.1371/journal.pone.0169670 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Herculano-Houzel S (2011) Scaling of brain metabolism with a fixed energy budget per neuron: implications for neuronal activity, plasticity and evolution. PloS One 6:e17514CrossRefPubMedPubMedCentralGoogle Scholar
  37. Isler K, Van Schaik CP (2006) Metabolic costs of brain size evolution. Biol Lett 2(4):557–560.  https://doi.org/10.1098/rsbl.2006.0538 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Jeschke JM, Strayer DL (2008) Usefulness of bioclimatic models for studying climate change and invasive species. Ann N Y Acad Sci 1134(1):1–24.  https://doi.org/10.1196/annals.1439.002 CrossRefPubMedGoogle Scholar
  39. Kennedy AD (1997) Bridging the gap between general circulation model (GCM) output and biological microenvironments. Int J Biometeorol 40(2):119–122.  https://doi.org/10.1007/s004840050031 CrossRefGoogle Scholar
  40. Kinmonth-Schultz HA (2016) Determining day length and temperature regulation of flowering: a molecular and modelling approach. PhD dissertation, University of Washington, SeattleGoogle Scholar
  41. Kotrschal A, Rogell B, Bundsen A, Svensson B, Zajitschek S, Brännström I, Immler S, Maklakov AA, Kolm N (2013) Artificial selection on relative brain size in the guppy reveals costs and benefits of evolving a larger brain. Curr Biol 23(2):168–171.  https://doi.org/10.1016/j.cub.2012.11.058 CrossRefPubMedPubMedCentralGoogle Scholar
  42. LeGates TA, Fernandez DC, Hattar S (2014) Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 15(7):443–454.  https://doi.org/10.1038/nrn3743 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lopes AF, Morais P, Pimentel M, Rosa R, Munday PL, Goncalves EJ, Faria AM (2016) Behavioural lateralization and shoaling cohesion of fish larvae altered under ocean acidification. Mar Biol 163(12):243.  https://doi.org/10.1007/s00227-016-3026-4 CrossRefGoogle Scholar
  44. Maloney SK, Moss G, Cartmell T, Mitchell D (2005) Alteration in diel activity patterns as a thermoregulatory strategy in black wildebeest (Connochaetes gnou). J Comp Physiol A 191(11):1055–1064.  https://doi.org/10.1007/s00359-005-0030-4 CrossRefGoogle Scholar
  45. McKemy DD, Neuhausser WM, Julius D (2002) Identification of a cold receptor reveals a general role for TRP channels in thermosensation. Nature 416(6876):52–58.  https://doi.org/10.1038/nature719 CrossRefPubMedGoogle Scholar
  46. McLeman R, Smit B (2006) Migration as an adaptation to climate change. Clim Chang 76(1–2):31–53.  https://doi.org/10.1007/s10584-005-9000-7 CrossRefGoogle Scholar
  47. Mizoguchi H, Fukaya K, Mori R, Itoh M, Funakubo M, Sato J (2011) Lowering barometric pressure aggravates depression-like behavior in rats. Behav Brain Res 218(1):190–193.  https://doi.org/10.1016/j.bbr.2010.11.057 CrossRefPubMedGoogle Scholar
  48. Munday PL, Cheal AJ, Dixson DL, Rummer JL, Fabricius KE (2014) Behavioural impairment in reef fishes caused by ocean acidification at CO2 seeps. Nat Clim Chang 4(6):487–492.  https://doi.org/10.1038/nclimate2195 CrossRefGoogle Scholar
  49. Nams VO (2005) Using animal movement paths to measure response to spatial scale. Oecologia 143(2):179–188.  https://doi.org/10.1007/s00442-004-1804-z CrossRefPubMedGoogle Scholar
  50. Nilsson GE, Dixson DL, Domenici P, McCormick MI, Sørensen C, Watson SA, Munday PL (2012) Near-future carbon dioxide levels alter fish behaviour by interfering with neurotransmitter function. Nat Clim Chang 2(3):201–204.  https://doi.org/10.1038/nclimate1352 CrossRefGoogle Scholar
  51. O’Donnell S, Clifford MR, Bulova SJ, DeLeon S, Papa C, Zahedi N (2014) A test of neuroecological predictions using paperwasp caste differences in brain structure (Hymenoptera: Vespidae). Behav Ecol Sociobiol 68(4):529–536.  https://doi.org/10.1007/s00265-013-1667-6 CrossRefGoogle Scholar
  52. Ou M, Hamilton TJ, Eom J, Lyall EM, Gallup J, Jiang A, Lee J, Close DA, Yun SS, Brauner CJ (2015) Responses of pink salmon to CO2-induced aquatic acidification. Nature. Clim Chang 5(10):950–955.  https://doi.org/10.1038/nclimate2694 CrossRefGoogle Scholar
  53. Pallotta MM, Turano M, Ronca R, Mezzasalma M, Petraccioli A, Odierna G, Capriglione T (2017) Brain gene expression is influenced by incubation temperature during leopard gecko (Eublepharis macularius) development. J Exp Zool 328B:360–370CrossRefGoogle Scholar
  54. Parmesan C (2006) Ecological and evolutionary responses to recent climate change. Ann Rev Ecol Evol Syst 37(1):637–669.  https://doi.org/10.1146/annurev.ecolsys.37.091305.110100 CrossRefGoogle Scholar
  55. Pounds JA, Fogden MP, Campbell JH (1999) Biological response to climate change on a tropical mountain. Nature 15:611–615CrossRefGoogle Scholar
  56. Pravosudov VV, Roth TC II, Forister ML et al (2013) Differential hippocampal gene expression is associated with climate-related natural variation in memory and the hippocampus in food-caching chickadees. Molec Ecol 22:397–408CrossRefGoogle Scholar
  57. Ramirez C, Nacher J, Molowny A, Sánchez-Sánchez F, Irurzun A, López-García C (1997) Photoperiod-temperature and neuroblast proliferation-migration in the adult lizard cortex. Neuroreport 8(9):2337–2442.  https://doi.org/10.1097/00001756-199707070-00047 CrossRefPubMedGoogle Scholar
  58. Reppert SM, Guerra PA, Merlin C (2016) Neurobiology of monarch butterfly migration. Annu Rev Entomol 61(1):25–42.  https://doi.org/10.1146/annurev-ento-010814-020855 CrossRefPubMedGoogle Scholar
  59. Robinson RA, Baillie SR, Crick HQ (2007) Weather-dependent survival: implications of climate change for passerine population processes. Ibis 149(2):357–364.  https://doi.org/10.1111/j.1474-919X.2006.00648.x CrossRefGoogle Scholar
  60. Roth TC II, LaDage LD, Freas CA, Pravosudov VV (2012) Variation in memory and the hippocampus across populations from different climates: a common garden approach. Proc R Soc B 279:402–410CrossRefPubMedGoogle Scholar
  61. Roy M, Bouma M, Dhiman RC, Pascual M (2015) Predictability of epidemic malaria under non-stationary conditions with process-based models combining epidemiological updates and climate variability. Malar J 14(1):419.  https://doi.org/10.1186/s12936-015-0937-3 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Savoca MS, Nevitt GA (2014) Evidence that dimethyl sulfide facilitates a tritrophic mutualism between marine primary producers and top predators. Proc Nat Acad Sci 111(11):4157–4161.  https://doi.org/10.1073/pnas.1317120111 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Schloss CA, Nuñez TA, Lawler JJ (2012) Dispersal will limit ability of mammals to track climate change in the Western Hemisphere. Proc Nat Acad Sci 109(22):8606–8611.  https://doi.org/10.1073/pnas.1116791109 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Sherry DF (2006) Neuroecology. Ann Rev Psychol 57(1):167–197.  https://doi.org/10.1146/annurev.psych.56.091103.070324 CrossRefGoogle Scholar
  65. Shin LM, Rauch SL, Pittman RK (2006) Amygdala, medial prefrontal cortex, and hippocampal function in PTSD. Ann N Y Acad Sci 1071(1):67–79.  https://doi.org/10.1196/annals.1364.007 CrossRefPubMedGoogle Scholar
  66. Sibly RM, Calow P (1986) Physiological ecology of animals: an evolutionary approach. Blackwell Scientific Publications, Oxford, pp 179Google Scholar
  67. Stevenson RD (1985) The relative importance of behavioral and physiological adjustments controlling body temperature in terrestrial ectotherms. Am Nat 126(3):362–386.  https://doi.org/10.1086/284423 CrossRefGoogle Scholar
  68. Sunday JM, Bates AE, Kearney MR, Colwell RK, Dulvy NK, Longino JT, Huey RB (2014) Thermal-safety margins and the necessity of thermoregulatory behavior across latitude and elevation. Proc Nat Acad Sci 111(15):5610–5615.  https://doi.org/10.1073/pnas.1316145111 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Tewksbury JJ, Huey RB, Deutsch CA (2008) Putting the heat on tropical animals. Science 320(5881):1296–1297.  https://doi.org/10.1126/science.1159328 CrossRefPubMedGoogle Scholar
  70. Todd BD, Scott DE, Pechmann JH et al (2011) Climate change correlates with rapid delays and advancements in reproductive timing in an amphibian community. Proc R Soc B 278(1715):2191–2197.  https://doi.org/10.1098/rspb.2010.1768 CrossRefPubMedGoogle Scholar
  71. Tresguerres M, Hamilton TJ (2017) Acid–base physiology, neurobiology and behaviour in relation to CO2-induced ocean acidification. J Exp Biol 220(12):2136–2148.  https://doi.org/10.1242/jeb.144113 CrossRefPubMedGoogle Scholar
  72. Urban MC, Zarnetske PL, Skelly DK (2013) Moving forward: dispersal and species interactions determine biotic responses to climate change. Ann N Y Acad Sci 1297:44–60.  https://doi.org/10.1111/nyas.12184 PubMedGoogle Scholar
  73. Voets T, Droogmans G, Wissenbach U, Janssens A, Flockerzi V, Nilius B (2004) The principle of temperature-dependent gating in cold-and heat-sensitive TRP channels. Nature 430(7001):748–754.  https://doi.org/10.1038/nature02732 CrossRefPubMedGoogle Scholar
  74. Warren RJ II, Chick LD, DeMarco B et al (2016) Climate-driven range shift prompts species replacement. Insect Soc 63(4):593–601.  https://doi.org/10.1007/s00040-016-0504-0 CrossRefGoogle Scholar
  75. Welch KD, Harwood JD (2014) Temporal dynamics of natural enemy–pest interactions in a changing environment. Biol Control 75:18–27.  https://doi.org/10.1016/j.biocontrol.2014.01.004 CrossRefGoogle Scholar
  76. White (2015) States of emergency: trauma and climate change. Ecopsychology 7(4):192–197.  https://doi.org/10.1089/eco.2015.0024 CrossRefGoogle Scholar
  77. Wingfield JC (2008) Comparative endocrinology, environment and global change. Gen Comp Endocrinol 157(3):207–216.  https://doi.org/10.1016/j.ygcen.2008.04.017 CrossRefPubMedGoogle Scholar
  78. Wingfield JC (2015) Coping with change: a framework for environmental signals and how neuroendocrine pathways might respond. Front Neuroendocrinol 37:89–96.  https://doi.org/10.1016/j.yfrne.2014.11.005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biodiversity Earth and Environmental ScienceDrexel UniversityPhiladelphiaUSA

Personalised recommendations