The Science of Nature

, 104:74 | Cite as

A new Jurassic theropod from China documents a transitional step in the macrostructure of feathers

  • Ulysse LefèvreEmail author
  • Andrea Cau
  • Aude Cincotta
  • Dongyu Hu
  • Anusuya Chinsamy
  • François Escuillié
  • Pascal Godefroit
Original Paper


Genuine fossils with exquisitely preserved plumage from the Late Jurassic and Early Cretaceous of northeastern China have recently revealed that bird-like theropod dinosaurs had long pennaceous feathers along their hindlimbs and may have used their four wings to glide or fly. Thus, it has been postulated that early bird flight might initially have involved four wings (Xu et al. Nature 421:335–340, 2003; Hu et al. Nature 461:640–643, 2009; Han et al. Nat Commun 5:4382, 2014). Here, we describe Serikornis sungei gen. et sp. nov., a new feathered theropod from the Tiaojishan Fm (Late Jurassic) of Liaoning Province, China. Its skeletal morphology suggests a ground-dwelling ecology with no flying adaptations. Our phylogenetic analysis places Serikornis, together with other Late Jurassic paravians from China, as a basal paravians, outside the Eumaniraptora clade. The tail of Serikornis is covered proximally by filaments and distally by slender rectrices. Thin symmetrical remiges lacking barbules are attached along its forelimbs and elongate hindlimb feathers extend up to its toes, suggesting that hindlimb remiges evolved in ground-dwelling maniraptorans before being co-opted to an arboreal lifestyle or flight.


Paraves Birds Feathers Barbules Jurassic Flight evolution 



Palaeontological Museum of Liaoning


Yizhou Fossil and Geology Park



This work was supported by a grant (BL/36/62) to P.G. from the SPP Politique scientifique (Belgium), by FRIA Grants to U.L. and A.Ci. from the F.R.S.-FNRS and by grants to H.D. from the National Natural Science Foundation of China (41172026) and the Natural Science Foundation (201102199). Photographs were taken by Thierry Hubin (RBINS). The use of TNT was kindly permitted by the Willi Hennig Society. The genus name was found after the preliminary expertise of the specimen by Danielle Dhouailly (Université Joseph Fourier). We thank each reviewer that spent time and made efforts in order to improve the final version of our paper. We would also like to thank Emily Willoughby who painted the life reconstruction of Serikornis sungei.

Supplementary material

114_2017_1496_MOESM1_ESM.doc (88.2 mb)
ESM 1 (DOC 90341 kb)


  1. Agnolin FL, Novas FE (2013) Avian ancestors. In: Lohmann G, Mysak LA, Notholt J, Rabassa J, Unnithan V (eds) A review of the phylogenetic relationships of the theropods unenlagiidae, microraptoria, anchiornis and scansoriopterygidae. Springer, NetherlandsGoogle Scholar
  2. Apostolaki NE, Rayfield EJ, Barrett PM (2015) Osteological and soft-tissue evidence for pneumatization in the cervical column of the ostrich (Struthio camelus) and observations on the vertebral columns of non-volant, semi-volant and semi-aquatic birds. PLoS One 10:e0143834CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barrows CW (1981) Roost selection by spotted owls: an adaptation to heat stress. Condor 83:302–309CrossRefGoogle Scholar
  4. Barsbold R (1974) Saurornithoididae, a new family of small theropod dinosaurs from Central Asia and North America. Paleontol Pol 30:5–22Google Scholar
  5. Bartels T (2003) Variations in the morphology, distribution, and arrangement of feathers in domesticated birds. J Exp Zool 298B:91–108CrossRefGoogle Scholar
  6. Baumel JJ (1993) Handbook of avian anatomy: nomina anatomica avium, 2nd ed. ed, Publications of the Nuttall Ornithological Club. The Nuttall Ornithological ClubGoogle Scholar
  7. Benson RB, Rich TH, Vickers-Rich P, Hall M (2012) Theropod fauna from Southern Australia indicates high polar diversity and climate-driven dinosaur provinciality. PLoS One 7:e37122CrossRefPubMedPubMedCentralGoogle Scholar
  8. Boles WE (1997) Hindlimb proportions and locomotion of Emuarius gidju (Patterson & Rich, 1987) (Aves: Casuaridae). Mem Qld Mus 41:235–240Google Scholar
  9. Bonde N, Christiansen P (2003) The detailed anatomy of Rhamphorhynchus: axial pneumaticity and its implications. Geol Soc Lond Spec Publ 217:217–232CrossRefGoogle Scholar
  10. Bramwell CD, Whitfield GR (1974) Biomechanics of Pteranodon. Philos Trans R Soc B 267:503–581CrossRefGoogle Scholar
  11. Britt BB (1993) Pneumatic postcranial bones in dinosaurs and other archosaurs (PhD thesis). University of CalgaryGoogle Scholar
  12. Britt BB, Makovicky PJ, Gauthier J, Bonde N (1998) Postcranial pneumatization in Archaeopteryx. Nature 395:374–376CrossRefGoogle Scholar
  13. Brown RE, Baumel JJ, Klemm R (1994) Anatomy of the propatagium: the great horned owl (Bulbo virginianus). J Morphol 219:205–224CrossRefGoogle Scholar
  14. Butler RJ, Barrett PM, Gower DJ (2009) Postcranial skeletal pneumaticity and air-sacs in the earliest pterosaurs. Biol Lett 5:557–560CrossRefPubMedPubMedCentralGoogle Scholar
  15. Carney RM, Vinther J, Shawkey MD, D’Alba L, Ackermann J (2012) New evidence on the colour and nature of the isolated Archaeopteryx feather. Nat Commun 3. doi: 10.1038/ncomms1642
  16. Chiappe LM, Grimaldi DA, Wang X, Tedford RH, Nguyen T, Taylor BE (1999) Anatomy and systematics of the Confuciusornithidae (Theropoda, Aves) from the Late Mesozoic of northeastern China. American Museum of Natural HistoryGoogle Scholar
  17. Chinsamy AT, Chiappe LM, Marugán-Lobón J, Gao C, Zhang F (2013) Gender identification of the Mesozoic bird Confuciusornis sanctus. Nat Commun 4:1381CrossRefPubMedGoogle Scholar
  18. Christiansens P (1999) Long bone scalin and limb posture in non-avian theropods: evidence for differential allometry. J Vertebr Paleontol 19:666–680CrossRefGoogle Scholar
  19. Choiniere JN, Xu X, Clark JM, Forster CA, Guo Y, Han F (2010) A basal Alvarezsauroid theropod from the Early Late Jurassic of Xinjiang, China. Science 327:571–574CrossRefPubMedGoogle Scholar
  20. Chu Z, He H, Ramezani J, Bowring SA, Hu D-Y, Zhang L, Zheng S, Wang X, Zhou Z, Deng C, Guo J (2016) High precision U/Pb geochronology of the Jurassic Yanliao biota from Jianchang (western Liaoning Province, China): age constraints on the rise of feathered dinosaurs and eutherian mammals. Geochem Geophys Geosyst 17:3983–3992Google Scholar
  21. Claessens LPAM, O’Connor PM, Unwin DM (2009) Respiratory evolution facilitated the origin of pterosaur flight and aerial gigantism. PLoS One 4:e4497CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cope ED (1877) On a gigantic saurian from the Dakota Epoch of Colorado. Paleontol Bull 25:5–10Google Scholar
  23. Cubo J, Casinos A (2000) Incidence and mechanical significance of pneumatization in the long bones of birds. Zool J Linnean Soc 130:499–510CrossRefGoogle Scholar
  24. Currey JD, Alexander RM (1985) The thickness of the walls of tubular bones. J Zool 206:453–468CrossRefGoogle Scholar
  25. Currie PJ (2003) Allometric bgrowth in tyrannosaurids (Dinosauria: TTheropod) from the Upper Cretaceous of North American and Asia. Can J Earth Sci 40:651–665CrossRefGoogle Scholar
  26. D’Alba L, Van Hemert C, Spencer KA, Heidinger BJ, Gill L, Evans NP, Monaghan P, Handel CM, Shawkey MD (2014) Melanin-based color of plumage: role of condition and of feathers’ microstructure. Integr Comp Biol 54:633–644. doi: 10.1093/icb/icu094 CrossRefPubMedGoogle Scholar
  27. Duncker HR (1971) The lung air-sac system of birds. Adv Anat Embryol Cell Biol 45:1–171Google Scholar
  28. Eaton GF (1910) Osteology of Pteranodon. Conn Acad Arts Sci Mem 2:1–38Google Scholar
  29. Fajardo RJ, Hernandez R, O’Connor PM (2007) Postcranial skeletal pneumaticity: a case study in the use of quantitative microCT to assess vertebral structure in birds. J Anat 211:138–147CrossRefPubMedPubMedCentralGoogle Scholar
  30. Feduccia A (1993) Evidence from claw geometry indicating arboreal habits of Archaeopteryx. Science 259:790–793CrossRefPubMedGoogle Scholar
  31. Feduccia A, Czerkas SA (2015) Testing the neoflightless hypothesis: propatagium reveals flying ancestry of oviraptorosaurs. J Ornithol 156:1067. doi: 10.1007/s10336-015-1190-9 CrossRefGoogle Scholar
  32. Forster CA (1998) The theropod ancestry of birds: new evidence from the late cretaceous of Madagascar. Science 279:1915–1919. doi: 10.1126/science.279.5358.1915 CrossRefPubMedGoogle Scholar
  33. Foth C, Tischlinger H, Rauhut OWM (2014) New specimen of Archaeopteryx provides insights into the evolution of pennaceous feathers. Nature 511:79–82. doi: 10.1038/nature13467 CrossRefPubMedGoogle Scholar
  34. Gatesy SM (1991) Hind limb scaling in birds and other theropods: implications for terrestrial locomotion. J Morphol 209:83–96CrossRefGoogle Scholar
  35. Gao C, Morschhauser EM, Varricchio DJ, Liu J, Zhao B (2012) A second soundly sleeping dragon: new anatomical details of the Chinese Troodontid Mei long with implications for phylogeny and taphonomy. PLoS One 7:e45203. doi: 10.1371/journal.pone.0045203 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Godefroit P, Cau A, Hu D, Escuillié F, Wenhao W, Dyke GJ (2013a) A Jurassic avialan dinosaur from China resolves the early phylogenetic history if birds. Nature 498:359–362. doi: 10.1038/nature12168 CrossRefPubMedGoogle Scholar
  37. Godefroit P, Demuynck H, Dyke GJ, Hu D, Escuillié F, Claeys P (2013b) Reduced plumage and flight ability of a new Jurassic paravian theropod from China. Nat Commun 4. doi: 10.1038/ncomms2389
  38. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786CrossRefGoogle Scholar
  39. Han G, Chiappe LM, Ji S-A, Habib M, Turner AH, Chinsamy A, Liu X, Han L (2014) A new raptorial dinosaur with excetpionally long feathering provides insights into dromaeosaurid flight performance. Nat Commun 5:4382PubMedGoogle Scholar
  40. Houck MA, Gauthier JA, Strauss RE (1990) Allometric scaling in the earliest fossil bird Archaeopteryx lithographica. Science 247:195–198CrossRefPubMedGoogle Scholar
  41. Hu D, Hou L, Zhang L, Xu X (2009) A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461:640–643CrossRefPubMedGoogle Scholar
  42. Ji Q, Currie PJ, Norell MA, Ji S-A (1998) Two feathered dinosaurs from the northeastern China. Nature 393:753–761CrossRefGoogle Scholar
  43. Ji Q, Norell MA, Gao K, Ji S (2001) The distribution of integumentary structures in a feathered dinosaur. Nature 410:1084–1088CrossRefPubMedGoogle Scholar
  44. Lefèvre U, Hu D, Escuillié F, Dyke G, Godefroit P (2014) A new long-tailed basal bird from the Lower Cretaceous of north-eastern China. Biol J Linn Soc 113:790–804. doi: 10.1111/bij.12343 CrossRefGoogle Scholar
  45. Li Q, Gao K-Q, Meng Q, Clarke JA, Shawkey MD, D’Alba L, Pei R, Ellison M, Norell MA, Vinther J (2012) Reconstruction of Microraptor and the evolution of iridescent plumage. Science 335:1215–1219CrossRefPubMedGoogle Scholar
  46. Li Q, Gao K-Q, Vinther J, Shawkey MD, Clarke JA, D’Alba L, Meng Q, Briggs DEG, Prum RO (2010) Plumage color patterns of an extinct dinosaur. Science 327:1369–1372CrossRefPubMedGoogle Scholar
  47. Lindgren J, Sjövall P, Carney RM, Cincotta A, Uvdal P, Hutcheson SW, Gustafsson O, Lefèvre U, Escuillié F, Heimdal J, Engdahl A, Gren JA, Kear BP, Wakamatsu K, Yans J, Godefroit P (2015) Molecular composition and ultrastructure of Jurassic paravian feathers. Sci Rep 5. doi: 10.1038/srep13520
  48. Longrich NR, Vinther J, Meng Q, Li Q, Russell AP (2012) Primitive wing feather arrangement in Archaeopteryx lithographica and Anchiornis huxleyi. Curr Biol 22:2262–2267. doi: 10.1016/j.cub.2012.09.052 CrossRefPubMedGoogle Scholar
  49. Lucas AM, Stettenheim PR (1972) Avian anatomy: integument, parts I. U.S. Agricultural Research Service, Washington D.C.Google Scholar
  50. Makovicky PJ, Apesteguía S, Agnolin FL (2005) The earliest dromaeosaurid theropod from South America. Nature 473:1007–1011CrossRefGoogle Scholar
  51. Makovicky PJ, Kobayashi Y, Currie PJ (2004) Ornithomimosauria. In: Weishampel DB, Dodson P, Osmólska (eds) The Dinosauria, 2nd edn. University of California Press, California, pp 135–150Google Scholar
  52. Makovicky PJ, Norell MA (2004) Troodontidae. In: Weishampel DB, Dodson P, Osmolska H (eds) The Dinosauria, 2nd edn. University of California Press, California, pp 184–195Google Scholar
  53. Manning PL, Margetts L, Johnson MR, Withers PJ, Sellers WI, Falkingham PL, Mummery PM, Barrett PM, Raymont DR (2009) Biomechanics of Dromaeosaurid dinosaur claws: application of X-ray microtomography, nanoindentation, and finite element analysis. Anat Rec 292:1397–1405CrossRefGoogle Scholar
  54. Marsh OC (1877) Notice of new dinosaurian reptiles from the Jurassic formation. Am J Sci 14:514–516CrossRefGoogle Scholar
  55. Mayr G, Pohl B, Peters SD (2005) A well-preserved Archaeopteryx specimen with theropod features. Science 310:1483–1486CrossRefPubMedGoogle Scholar
  56. Norell MA, Makovicky PJ (2004) Dromaeosauridae. In: Weishampel DB, Dodson P, Osmolska H (eds) The Dinosauria, 2nd edn. University of California Press, California, pp 184–195Google Scholar
  57. Norell MA, Makovicky PJ (1999) Important features of the dromaeosaur skeleton. II. Information from newly collected specimens of Velociraptor mongoliensis. Am Mus Novit 3215:1–28Google Scholar
  58. Norell MA, Makovicky PJ, Bever GS, Balanoff AM, Clark JM, Barsbold R, Rowe TB (2009) A review of the Mongolian Cretaceous dinosaur Saurornithoides (Troodontidae: Theropoda). Am Mus Novit 3654:1–63CrossRefGoogle Scholar
  59. O’Connor J, Wang X, Sullivan C, Zheng X, Tubaro P, Zhang X, Zhou Z (2013) Unique caudal plumage of Jeholornis and complex tail evolution in early birds. Proc Natl Acad Sci 110:17404–17408. doi: 10.1073/pnas.1316979110 CrossRefPubMedPubMedCentralGoogle Scholar
  60. O’Connor JK, Chang H (2015) Hindlimb feathers in paravians: primarily “wings” or ornaments? Biol Bull 42:616–621. doi: 10.1134/S1062359015070079 CrossRefGoogle Scholar
  61. O’Connor PM (2006) Postcranial pneumaticity: an evaluation of soft-tissue influences on the postcranial skeleton and the reconstruction of pulmonary anatomy in archosaurs. J Morphol 267:1199–1226CrossRefPubMedGoogle Scholar
  62. O’Connor PM (2004) Pulmonary pneumaticity in the postcranial skeleton of extant Aves: a case study examining Anseriformes. J Morphol 261:141–161CrossRefPubMedGoogle Scholar
  63. O’Connor PM, Claessens LPAM (2005) Basic avian pulmonary design and flow-through ventilation in non-avian theropod dinosaurs. Nature 436:253–256CrossRefPubMedGoogle Scholar
  64. Osborn HF (1924) Three new theropoda, protoceratops zone, Central Mongolia. Am Mus Novit 144:1–12Google Scholar
  65. Osmolska H, Currie PJ, Barsbold R (2004) Oviraptorosauria. In: Weishampel DB, Dodson P, Osmólska (eds) The Dinosauria, 2nd edn. University of California Press, California, pp 165–183Google Scholar
  66. Ostrom JH (1969) Osteology of Deinonychus antirrhopus, an usual theropod from the Lower Cretaceous of Montana. Bull Peabody Mus Nat Hist 30:1–165Google Scholar
  67. Pike AVL, Maitland DP (2004) Scaling of bird claws. J Zool 262:73–81CrossRefGoogle Scholar
  68. Prum RO, Brush AH (2012) The evolutionary origin and diversification of feathers. Q Rev Biol 77:261–295CrossRefGoogle Scholar
  69. Seeley HG (1870) Remarks on Professor Owen’s monograph on Dimorphodon. Ann Mag Nat Hist 4:129–152CrossRefGoogle Scholar
  70. Sereno PC, Martinez RN, Wilson JA, Varrichio DJ, Alcober OA, Larsson HCE (2008) Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. PLoS One 3:e3303CrossRefPubMedPubMedCentralGoogle Scholar
  71. Snively E, Russel AP, Powell GL (2004) Evolutionary morphology of the coelurosaurian arctometatarsus: descriptive, morphometric and phylogenetic approaches. Zool J Linnean Soc 142:525–553CrossRefGoogle Scholar
  72. Sullivan C, Wang Y, Hone DWE, Wang Y, Xu X, Zhang F (2014) The vertebrates of the Jurassic Daohugou Biota of northeastern China. J Vertebr Paleontol 34:243–280CrossRefGoogle Scholar
  73. Upchurch P, Barrett PM, Dodson P (2004) Sauropoda. In: The Dinosauria, 2nd edn. California, pp 259–322Google Scholar
  74. Wang X, Michael P, Zheng X, Kaye TG, Falk AR, Hartman SA, Xu X (2017) Basal paravian functional anatomy illuminated by high-detail body outline. Nat Commun 8:14576CrossRefPubMedPubMedCentralGoogle Scholar
  75. Wang X, O’Connor JK, Zheng X, Wang M, Hu H, Zhou Z (2014) Insights into the evolution of rachis dominated tail feathers of a new enantiornithines (Aves: Ornithothoraces). Biol J Linn Soc 113:805–819CrossRefGoogle Scholar
  76. Wedel MJ (2003) The evolution of vertebral pneumaticity in sauropod dinosaurs. J Vertebr Paleontol 23:344–357CrossRefGoogle Scholar
  77. Wedel MJ (2007) What pneumaticity tells us about “prosauropods”, and vice versa. Spec Pap Palaeontol 77:207–222Google Scholar
  78. Wellnhofer P (2009) Archaeopteryx: the icon of evolution. Verlag Dr. Friedrich Pfeil, MünchenGoogle Scholar
  79. Xu X, Currie PJ, Pittman M, Xing L, Meng Q, Lü J, Hu D, Yu C (2017) Mosaic evolution in an asymmetrically feathered troodontid dinosaur with transitional features. Nat Commun 8:14972CrossRefPubMedPubMedCentralGoogle Scholar
  80. Xu X, Guo Y (2009) The origin and early evolution of feathers: insights from recent paleontological and neontological data. Vertebr Palasiat 47:311–329Google Scholar
  81. Xu X, Norell MA (2004) A new troodontid dinosaur from China with avian-like sleeping posture. Nature 431:838–841CrossRefPubMedGoogle Scholar
  82. Xu X, Qi Z, Norell M, Sullivan C, Hone D, Erickson G, Wang X, Han F, Guo Y (2009) A new feathered maniraptoran dinosaur fossil that fills a morphological gap in avian origin. Chin Sci Bull 54:430–435Google Scholar
  83. Xu X, Wu X-C (2001) Cranial morphology of Sinornithosaurus millenii Xu et al. 1999 (Dinosauria: Theropoda: Dromaeosauridae) from the Yixian Formation of Liaoning, China. Can J Earth Sci 38:1739–1752CrossRefGoogle Scholar
  84. Xu X, You H, Du K, Han F (2011) An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475:465–470. doi: 10.1038/nature10288 CrossRefPubMedGoogle Scholar
  85. Xu X, Zhang F (2005) A new maniraptoran dinosaur from China with long feathers on the metatarsus. Naturwissenschaften 92:173–177CrossRefPubMedGoogle Scholar
  86. Xu X, Zheng X, Sullivan C, Wang X, Xing L, Wang Y, Zhang X, O’Connor JK, Zhang F, Pan Y (2015) A bizarre Jurassic maniraptoran theropod with preserved evidence of membranous wings. Nature 521:70–73CrossRefPubMedGoogle Scholar
  87. Xu X, Zheng X, You H (2010) Exceptional dinosaur fossils show ontogenetic development of early feathers. Nature 464:1338–1341CrossRefPubMedGoogle Scholar
  88. Xu X, Zhou Z, Wang X, Kuang X, Zhang F, Du X (2003) Four winged dinosaurs from China. Nature 421:335–340CrossRefPubMedGoogle Scholar
  89. Zhang F, Zhou Z, Dyke G (2006) Feathers and ‘feather-like’ integumentary structures in Liaoning birds and dinosaurs. Geol J 41:395–404CrossRefGoogle Scholar
  90. Zhang F, Zhou Z, Xu X, Wang X (2002) A juvenile coelurosaurian theropod from China indicates arboreal habits. Naturwissenschaften 89:394–398CrossRefPubMedGoogle Scholar
  91. Zhao X-J, Currie PJ (1993) A large crested theropod from the Jurassic of Xinjiang, People’s Republic of China. Can J Earth Sci 30:2027–2036CrossRefGoogle Scholar
  92. Zheng X, O’Connor JK, Huchzermeyer F, Wang X, Wang Y, Wang M, Zhou Z (2013a) Preservation of ovarian follicles reveals early evolution of avian reproductive behaviour. Nature 495:507–511. doi: 10.1038/nature11985 CrossRefPubMedGoogle Scholar
  93. Zheng X, Xu X, You H, Zhao Q, Dong Z (2010) A short-armed dromaeosaurid from the Jehol group of China with implications for early dromaeosaurid evolution. Proc R Soc Lond B 277:211–217CrossRefGoogle Scholar
  94. Zheng X, Zhou Z, Wang X, Zhang F, Wang Y, Wei G, Wang S, Xu X (2013b) Hind wings in basal birds and the evolution of leg feathers. Science 339:1309–1312CrossRefPubMedGoogle Scholar
  95. Zhou Z, Zhang F (2002) A long-tailed, seed-eating bird from the Early Cretaceous of China. Nature 418:1754–1756CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Ulysse Lefèvre
    • 1
    • 2
    Email author
  • Andrea Cau
    • 3
    • 4
  • Aude Cincotta
    • 2
    • 5
  • Dongyu Hu
    • 6
    • 7
  • Anusuya Chinsamy
    • 8
  • François Escuillié
    • 9
  • Pascal Godefroit
    • 2
  1. 1.Department of GeologyUniversity of LiègeLiègeBelgium
  2. 2.Earth and Life History O.DRoyal Belgian Institute of Natural SciencesBrusselsBelgium
  3. 3.Earth, Life and Environmental Sciences Department, Alma Mater StudiorumBologna UniversityBolognaItaly
  4. 4.Geological and Palaeontological Museum “G. Capellini”BolognaItaly
  5. 5.Department of GeologyUniversity of NamurNamurBelgium
  6. 6.Paleontological InstituteShenyang Normal UniversityShenyangChina
  7. 7.Key Laboratory for Evolution of past Life in Northeast AsiaMinistry of Land and Resources (Shenyang Normal University)ShenyangChina
  8. 8.Department Biological SciencesUniversity of Cape TownRondeboschSouth Africa
  9. 9.EldoniaGannatFrance

Personalised recommendations