The Science of Nature

, 104:59 | Cite as

Differences in functional traits between invasive and native Amaranthus species under different forms of N deposition

  • Congyan Wang
  • Jiawei Zhou
  • Jun Liu
  • Kun Jiang
Original Paper


Differences in functional traits between invasive and native plant species are believed to determine the invasion success of the former. Increasing amounts of anthropogenic nitrogen (N) are continually deposited into natural ecosystems, which may change the relative occurrence of the different N deposition forms (such as NH4–N, NO3–N, and CO(NH2)2–N) naturally deposited. Under high N deposition scenarios, some invasive species may grow faster, gaining advantage over native species. In a greenhouse experiment, we grew invasive and native Amaranthus species from seed both alone and in competition under simulated N enriched environments with different forms of N over 3 months. Then, we measured different leaf traits (i.e., plant height, leaf length, leaf width, leaf shape index, specific leaf area (SLA), and leaf chlorophyll and N concentrations). Results showed that the competition intensity between A. retroflexus and A. tricolor decreased under N deposition. This may be due to the large functional divergence between A. retroflexus and A. tricolor under simulated N deposition. Phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus were significantly lower than in A. tricolor. The lower range of phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may indicate a fitness cost for plastic functional traits under adverse environments. The restricted phenotypic plasticity of SLA and leaf chlorophyll concentration of A. retroflexus may also stabilize leaf construction costs and the growth rate. Meanwhile, the two Amaranthus species possessed greater plasticity in leaf N concentration under NO3–N fertilization, which enhanced their competitiveness.


Leaf functional traits Specific leaf area Invasive plant species Amaranthus retroflexus Anthropogenic nitrogen deposition 



This study was supported by National Natural Science Foundation of China (31300343). We are very grateful to the anonymous reviewers for the insightful and constructive comments that greatly improved this manuscript.


  1. Bobbink R, Hicks K, Galloway J, Spranger T, Alkemade R, Ashmore M, Bustamante M, Cinderby S, Davidson E, Dentener F, Emmett B, Erisman J-W, Fenn M, Gilliam F, Nordin A, Pardo L, De Vries W (2010) Global assessment of nitrogen deposition effects on terrestrial plant diversity: a synthesis. Ecol Appl 20:30–59. doi: 10.1890/08-1140.1 CrossRefPubMedGoogle Scholar
  2. Campitelli BE, Stinchcombe JR (2013) Natural selection maintains a single-locus leaf shape cline in Ivyleaf morning glory, Ipomoea hederacea. Mol Ecol 22:552–564. doi: 10.1111/mec.12057 CrossRefPubMedGoogle Scholar
  3. Cornell SE (2011) Atmospheric nitrogen deposition: revisiting the question of the importance of the organic component. Environ Pollut 159:2214–2222. doi: 10.1016/j.envpol.2010.11.014 CrossRefPubMedGoogle Scholar
  4. Cornell SE, Jickells TD, Cape JN, Rowland AP, Duce RA (2003) Organic nitrogen deposition on land and coastal environments: a review of methods and data. Atmos Environ 37:2173–2191. doi: 10.1016/S1352-2310(03)00133-X CrossRefGoogle Scholar
  5. Davidson AM, Jennions M, Nicotra AB (2011) Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecol Lett 14:419–431. doi: 10.1111/j.1461-0248.2011.01596.x CrossRefPubMedGoogle Scholar
  6. Funk JL (2008) Differences in plasticity between invasive and native plants from a low resource environment. J Ecol 96:1162–1173. doi: 10.1111/j.1365-2745.2008.01435.x CrossRefGoogle Scholar
  7. Gallagher RV, Randall RP, Leishman MR (2015) Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv Biol 29:360–369. doi: 10.1111/cobi.12399 CrossRefPubMedGoogle Scholar
  8. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai ZC, Freney JR, Martinelli LA, Seitzinger SP, Sutton MA (2008) Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320:889–892. doi: 10.1126/science.1136674 CrossRefPubMedGoogle Scholar
  9. Gross N, Börger L, Duncan RP, Hulme PE (2013) Functional differences between alien and native species: do biotic interactions determine the functional structure of highly invaded grasslands? Funct Ecol 27:1262–1272. doi: 10.1111/1365-2435.12120 CrossRefGoogle Scholar
  10. Gross N, Suding KN, Lavorel S, Roumet C (2007) Complementarity as a mechanism of coexistence between functional groups of grasses. J Ecol 95:1296–1305. doi: 10.1111/j.1365-2745.2007.01303.x CrossRefGoogle Scholar
  11. Gruntman M, Pehl AK, Joshi S, Tielbörger K (2014) Competitive dominance of the invasive plant Impatiens glandulifera: using competitive effect and response with a vigorous neighbour. Biol Invasions 16:141–151. doi: 10.1007/s10530-013-0509-9 CrossRefGoogle Scholar
  12. Hang ZH, Wu HP (2016) Zhenjiang Yearbook (the first edition). In: Chen J, Liu S (eds) Organized by Zhenjiang Municipal People’s Government & Writed by Zhenjiang Local Records Office, vol Vol. 25. Publishing House of Local Records, Beijing, p 27Google Scholar
  13. He WM, Li JJ, Peng PH (2012) Simulated warming differentially affects the growth and competitive ability of Centaurea maculosa populations from home and introduced ranges. PLoS One 7:e31170. doi: 10.1371/journal.pone.0031170 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Huang QQ, Shen YD, Li XX, Li SL, Fan ZW (2016) Invasive Eupatorium catarium and Ageratum conyzoides benefit more than does a common native plant from nutrient addition in both competitive and non-competitive environments. Ecol Res 31:145–152. doi: 10.1007/s11284-015-1323-x CrossRefGoogle Scholar
  15. Hulme P (2008) Phenotypic plasticity and plant invasions: is it all Jack? Funct Ecol 22:3–7. doi: 10.1111/j.1365-2435.2007.01369.x CrossRefGoogle Scholar
  16. Ishii H, Asano S (2010) The role of crown architecture, leaf phenology and photosynthetic activity in promoting complementary use of light among coexisting species in temperate forests. Ecol Res 25:715–722. doi: 10.1007/s11284-009-0668-4 CrossRefGoogle Scholar
  17. Jeong N, Moon J, Kim H, Kim C, Jeong S (2011) Fine genetic mapping of the genomic region controlling leaflet shape and number of seeds per pod in the soybean. Theor Appl Genet 122:865–874. doi: 10.1007/s00122-010-1492-5 CrossRefPubMedGoogle Scholar
  18. Kardel F, Wuyts K, Babanezhad M, Vitharana UWA, Wuytack T, Potters G, Samson R (2010) Assessing urban habitat quality based on specific leaf area and stomatal characteristics of Plantago lanceolata L. Environ Pollut 158:788–794. doi: 10.1016/j.envpol.2009.10.006 CrossRefPubMedGoogle Scholar
  19. Lamarque LJ, Porté AJ, Eymeric C, Lasnier J-B, Lortie CJ, Delzon S (2013) A test for pre-adapted phenotypic plasticity in the invasive tree Acer negundo L. PLoS One 8:e74239. doi: 10.1371/journal.pone.0074239 CrossRefPubMedPubMedCentralGoogle Scholar
  20. LeBel P, Bradley RL, Thiffault N (2013) The relative importance of nitrogen vs. moisture stress may drive intraspecific variations in the SLA-RGR relationship: the case of Picea mariana seedlings. Am J Plant Sci 4:1278–1284. doi: 10.4236/ajps.2013.46158 CrossRefGoogle Scholar
  21. Liu FD, Yang WJ, Wang ZS, Xu Z, Liu H, Zhang M, Liu YH, An SQ, Sun SC (2010) Plant size effects on the relationships among specific leaf area, leaf nutrient content, and photosynthetic capacity in tropical woody species. Acta Oecol 36:149–159. doi: 10.1016/j.actao.2009.11.004 CrossRefGoogle Scholar
  22. Liu XJ, Zhang Y, Han WX, Tang AH, Shen JL, Cui ZL, Vitousek P, Erisman JW, Goulding K, Christie P, Fangmeier A, Zhang FS (2013) Enhanced nitrogen deposition over China. Nature 494:459–462. doi: 10.1038/nature11917 CrossRefPubMedGoogle Scholar
  23. Ma JH, Xing GF, Yang WX, Ma LL, Gao M, Wang YG, Han YH (2012) Inhibitory effects of leachate from Eupatorium adenophorum on germination and growth of Amaranthus retroflexus and Chenopodium glaucum. Acta Ecol Sin 32:50–56. doi: 10.1016/j.chnaes.2011.12.004 CrossRefGoogle Scholar
  24. Mandák B, Zákravský P, Dostál P, Plačková I (2011) Population genetic structure of the noxious weed Amaranthus retroflexus in Central Europe. Flora 206:697–703. doi: 10.1016/j.flora.2011.01.010 CrossRefGoogle Scholar
  25. Matzek V (2012) Trait values, not trait plasticity, best explain invasive species’ performance in a changing environment. PLoS One 7:e48821. doi: 10.1371/journal.pone.0048821 CrossRefPubMedPubMedCentralGoogle Scholar
  26. McIntyre PJ, Strauss SY (2014) Phenotypic and transgenerational plasticity promote local adaptation to sun and shade environments. Ecol Evol 28:229–246. doi: 10.1007/s10682-013-9670-y CrossRefGoogle Scholar
  27. Meng FQ, Cao R, Yang DM, Niklas KJ, Sun SC (2014) Trade-offs between light interception and leaf water shedding: a comparison of shade- and sun-adapted species in a subtropical rainforest. Oecologia 174:13–22. doi: 10.1007/s00442-013-2746-0 CrossRefPubMedGoogle Scholar
  28. Ordonez A, Olff H (2013) Do alien plant species profit more from high resource supply than natives? A trait-based analysis. Glob Ecol Biogeogr 22:648–658. doi: 10.1111/geb.12019 CrossRefGoogle Scholar
  29. Palacio-Lóaez K, Gianoli E (2011) Invasive plants do not display greater phenotypic plasticity than their native or non-invasive counterparts: a meta-analysis. Oikos 120:1393–1401. doi: 10.1111/j.1600-0706.2010.19114.x CrossRefGoogle Scholar
  30. Pellissier L, Wisz MS, Strandberg B, Damgaard C (2014) Herbicide and fertilizers promote analogous phylogenetic responses but opposite functional responses in plant communities. Environ Res Lett 9:024016. doi: 10.1088/1748-9326/9/2/024016 CrossRefGoogle Scholar
  31. Pietsch KA, Ogle K, Cornelissen JHC, Cornwell WK, Bönisch G, Craine JM, Jackson BG, Kattge J, Peltzer DA, Penuelas J, Reich PB, Wardle DA, Weedon JT, Wright IJ, Zanne AE, Wirth C (2014) Global relationship of wood and leaf litter decomposability: the role of functional traits within and across plant organs. Glob Ecol Biogeogr 23:1046–1057. doi: 10.1111/geb.12172 CrossRefGoogle Scholar
  32. Powell KI, Chase JM, Knight TM (2013) Invasive plants have scale-dependent effects on diversity by altering species-area relationships. Science 339:316–318. doi: 10.1126/science.1226817 CrossRefPubMedGoogle Scholar
  33. Quan GM, Mao DJ, Zhang JE, Xie JF, Xu HQ, An M (2015) Response of invasive Chromolaena odorata and two coexisting weeds to contrasting irradiance and nitrogen. Photosynthetica 53:419–429. doi: 10.1007/s11099-015-0137-y CrossRefGoogle Scholar
  34. Scheepens JF, Frei ES, Stöcklin J (2010) Genotypic and environmental variation in specific leaf area in a widespread Alpine plant after transplantation to different altitudes. Oecologia 164:141–150. doi: 10.1007/s00442-010-1650-0 CrossRefPubMedGoogle Scholar
  35. Schlesinger WH (2009) On the fate of anthropogenic nitrogen. Proc Natl Acad Sci USA 106:203–208. doi: 10.1073/pnas.0810193105 CrossRefPubMedGoogle Scholar
  36. Thomson FJ, Moles AT, Auld TD, Kingsford RT (2011) Seed dispersal distance is more strongly correlated with plant height than with seed mass. J Ecol 99:1299–1307. doi: 10.1111/j.1365-2745.2011.01867.x CrossRefGoogle Scholar
  37. van Kleunen M, Weber E, Fischer M (2010) A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol Lett 13:235–245. doi: 10.1111/j.1461-0248.2009.01418.x CrossRefPubMedGoogle Scholar
  38. Verlinden M, De Boeck HJ, Nijs I (2014) Climate warming alters competition between two highly invasive alien plant species and dominant native competitors. Weed Res 54:234–244. doi: 10.1111/wre.12076 CrossRefGoogle Scholar
  39. Vile D, Garnier E, Shipley B, Laurent G, Navas ML, Roumet C, Lavorel S, Díaz S, Hodgson JG, Lloret F, Midgley GF, Poorter H, Rutherford MC, Wilson PJ, Wright IJ (2005) Specific leaf area and dry matter content estimate thickness in laminar leaves. Ann Bot 96:1129–1136. doi: 10.1093/aob/mci264 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Villar-Salvador P, Penuelas JL, Nicolas-Peragon JL, Benito LF, Dominguez-Lerena S (2013) Is nitrogen fertilization in the nursery a suitable tool for enhancing the performance of Mediterranean oak plantations? New For 44:733–751. doi: 10.1007/s11056-013-9374-8 CrossRefGoogle Scholar
  41. Wang CY, Liu J, Xiao HG, Du DL (2016a) Response of leaf functional traits of Cerasus yedoensis (Mats.) Yü li to serious insect attack. Pol J Environ Stud 25:333–339. doi: 10.15244/pjoes/60328 CrossRefGoogle Scholar
  42. Wang CY, Liu J, Xiao HG, Zhou JW (2016b) Differences in leaf functional traits between Rhus typhina and native species. Clean: Soil Air Water 44:1591–1597. doi: 10.1002/clen.201600144 Google Scholar
  43. Wang CY, Xiao HG, Liu J, Zhou JW, Du DL (2016c) Insights into the effects of simulated nitrogen deposition on leaf functional traits of Rhus typhina. Pol J Environ Stud 25:1279–1284. doi: 10.15244/pjoes/61788 CrossRefGoogle Scholar
  44. Wang CY, Zhou JW, Xiao HG, Liu J, Wang L (2017a) Variations in leaf functional traits among plant species grouped by growth and leaf types in Zhenjiang, China. J For Res 28:241–248. doi: 10.1007/s11676-016-0290-6 CrossRefGoogle Scholar
  45. Wang CY, Zhou JW, Jiang K, Liu J (2017b) Differences in leaf functional traits and allelopathic effects on seed germination and growth of Lactuca sativa between red and green leaves of Rhus typhina. S Afr J Bot 111:17–22. doi: 10.1016/j.sajb.2017.03.019 CrossRefGoogle Scholar
  46. Wang CY, Zhou JW, Liu J, Wang L, Xiao HG (2017c) Reproductive allocation strategy of two herbaceous invasive plants across different cover classes. Pol J Environ Stud 26:355–364. doi: 10.15244/pjoes/64240 CrossRefGoogle Scholar
  47. Wang TJ, Jiang F, Li S, Liu Q (2007) Trends in air pollution during 1996–2003 and cross-border transport in city clusters over the Yangtze River Delta Region of China. Terr Atmos Ocean Sci 5:995–1009. doi: 10.3319/TAO.2007.18.5.995(A) CrossRefGoogle Scholar
  48. Wang Z, Zhang L (2012) Leaf shape alters the coefficients of leaf area estimation models for Saussurea stoliczkai in central Tibet. Photosynthetica 50:337–342. doi: 10.1007/s11099-012-0039-1 CrossRefGoogle Scholar
  49. Yan XL, Liu QR, Shou HY, Zeng XF, Zhang Y, Chen L, Liu Y, Ma HY, Qi SY, Ma JS (2014) The categorization and analysis on the geographic distribution patterns of Chinese alien invasive plants. Biodivers Sci 22:667–676. doi: 10.3724/SP.J.1003.2014.14069 (In Chinese)CrossRefGoogle Scholar
  50. Yang Y, Zhao WJ, Li ZH, Zhu SF (2011) Molecular identification of a ‘Candidatus Phytoplasma ziziphi’-related strain infecting Amaranth (Amaranthus retroflexus L.) in China. J Phytopathol 159:635–637. doi: 10.1111/j.1439-0434.2011.01808.x CrossRefGoogle Scholar
  51. Zhang Y, Song L, Liu XJ, Li WQ, Lü SH, Zheng LX, Bai ZC, Cai GY, Zhang FS (2012) Atmospheric organic nitrogen deposition in China. Atmos Environ 46:195–204. doi: 10.1016/j.atmosenv.2011.09.080 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute of Environment and Ecology, Academy of Environmental Health and Ecological Security & School of the Environment and Safety EngineeringJiangsu UniversityZhenjiangPeople’s Republic of China

Personalised recommendations