Advertisement

The Science of Nature

, 104:51 | Cite as

New insights on the systematics, palaeoecology and palaeobiology of a plesiosaurian with soft tissue preservation from the Toarcian of Holzmaden, Germany

  • Peggy VincentEmail author
  • Rémi Allemand
  • Paul D. Taylor
  • Guillaume Suan
  • Erin E. Maxwell
Original Paper

Abstract

The Posidonienschiefer Formation (Toarcian) of Holzmaden, Baden-Württemberg in southwestern Germany has yielded several excellently preserved plesiosaurian specimens and received considerable research attention. The plesiosaurians found within these deposits are always significantly outnumbered by ichthyosaurs, and close examination of these rare specimens is crucial to a better understanding of the diversity and palaeoecology of Plesiosauria in this very peculiar ecosystem. The plesiosaurian specimen SMNS 51945 found in this area is a juvenile individual consisting of a partial, crushed skull and an exquisitely preserved post-cranial skeleton. Its anatomical characters seem to differ from the long-necked plesiosauroids Microcleidus brachypterygius and Seeleyosaurus guilelmiimperatoris that are the most abundant taxa within the plesiosaurian assemblage. The post-cranial skeleton preserves very likely soft tissues composed of buff-coloured and dark-coloured structures around the vertebral column and hindlimb of the animal. A network of buff-coloured fibres located posterior to the hindlimb most likely represents phosphatised collagen fibres as already found in some ichthyosaur specimens, confirming that wing area in plesiosaurians was much larger than that suggested by skeletal remains alone. The specimen also contains gastroliths (sand-sized grains mainly composed of quartz) in the stomach cavity suggesting the animal spent at least some of its time in shallow coastal waters, tens or hundreds of kilometres from the final place of burial.

Keywords

Germany Holzmaden Lower Jurassic Plesiosauria Soft tissues 

Notes

Acknowledgements

We would like to thank Rainer Schoch (SMNS, Stuttgart) for providing access to the collections of the SMNS. The first author also thanks Pierre Moissette (Lyon 1 University, France) for discussions. We gratefully acknowledge the comments of anonymous reviewers that helped us to improve our manuscript.

References

  1. Andrews CW (1913) A descriptive catalogue of the marine reptiles of the Oxford clay. Part II. Vol. 2. British Museum (Natural History), LondonGoogle Scholar
  2. Bardet N, Godefroit P, Sciau J (1999) A new elasmosaurid plesiosaur from the Lower Jurassic of southern France. Palaeontology 42:927–952CrossRefGoogle Scholar
  3. Benson RBJ, Druckenmiller PS (2014) Faunal turnover of marine tetrapods during the Jurassic-Cretaceous transition. Biol Rev 89:1–23Google Scholar
  4. Benson RBJ, Evans M, Druckenmiller PS (2012) High diversity, low disparity and small body size in plesiosaurs (Reptilia, Sauropterygia) from the Triassic–Jurassic boundary. PLoS One 7:e31838CrossRefPubMedPubMedCentralGoogle Scholar
  5. Benson RBJ, Evans M, Taylor MA (2015) The anatomy of Stratesaurus (Reptilia, Plesiosauria) from the lowermost Jurassic of Somerset, United Kingdom. J Vert Paleontol 35Google Scholar
  6. de Blainville HD (1835) Description de quelques espèces de reptiles de la Californie, précédée de l’analyse d’un système général d’Erpetologie et d’Amphibiologie. Nouvelles Annales du Muséum (National) d’History Naturelle. Paris 4:233–296Google Scholar
  7. Böttcher R (1989) Über die Nahrung eines Leptopterygius (Ichthyosauria, Reptilia) aus dem süddeutschen Posidonienschiefer (Unterer Jura) mit Bemerkungen über den Magen der Ichthyosaurier. Stuttg Beitr Natkd B Geol Palaeontol 155:1–19Google Scholar
  8. Böttcher R (1998) Saurier der Meere–Einzigartige Funde aus dem Posidonienschiefer. In: Heizmann EPJ (ed) Erdgeschichte mitteleuropäischer Regionen. Dr. Friedrich Pfeil, München, pp 97–106Google Scholar
  9. Bronn HG (1844) Ueber Ichthyosauren in den Lias-Schiefern der Gegend von Boll in Württemberg. N Jahrb Mineral Geogn Geol Petrefaktenkd Jg 1844:385408, 2 Taf., StuttgartGoogle Scholar
  10. Brown D, Vincent P, Bardet N (2013) Osteological redescription of the skull of Microcleidus homalospondylus (Sauropterygia, Plesiosauria) from the Lower Jurassic of England. J Paleontol 87:537–549CrossRefGoogle Scholar
  11. Brown DS (1981) The English Upper Jurassic Plesiosauroidea (Reptilia) and a review of the phylogeny and classification of the Plesiosauria. Bull Br Mus (Nat Hist) Geol 35:253–347Google Scholar
  12. Caldwell MW (1997) Limb osteology and ossification patterns in Cryptoclidus (Reptilia: Plesiosauroidea) with a review of sauropterygian limbs. J Vert Paleontol 17:295–307CrossRefGoogle Scholar
  13. Dames WB (1895) Die plesiosaurier der süddeutschen Liasformation. Abhandlungen der Königlich Preussischen Akademie der Wissenschaften zu Berlin 1895:1–81Google Scholar
  14. Darby DG, Ojakangas RW (1980) Gastroliths from an Upper Cretaceous plesiosaur. J Paleontol 54:548–556Google Scholar
  15. Dick DG, Schweigert G, Maxwell EE (2016) Trophic niche ontogeny and palaeoecology of early Toarcian Stenopterygius (Reptilia: Ichthyosauria). Palaeontology 59:423–431CrossRefGoogle Scholar
  16. Druckenmiller PS (2006) Early Cretaceous plesiosaurs (Sauropterygia: Plesiosauria) from northern Alberta: palaeoenvironmental and systematic implications. Unpublished Ph.D. thesis, University of Calgary, 558 ppGoogle Scholar
  17. Druckenmiller P (2002) Osteology of a new plesiosaur from the Lower Cretaceous (Albian) Thermopolis Shale of Montana. J Vert Paleontol 22:29–42CrossRefGoogle Scholar
  18. Everhart MJ (2000) Gastroliths associated with plesiosaur remains in the Sharon Springs Member of the Pierre Shale (Late Cretaceous), western Kansas. Transactions of the KAS 1903:64–75Google Scholar
  19. Geister J (1998) Lebensspuren von Meersauriern und ihren Beutetieren im mittleren Jura (Callovien) von Liesberg, Schweiz. Facies 39:105–124CrossRefGoogle Scholar
  20. Großmann F (2006) Taxonomy, phylogeny and palaeoecology of the plesiosauroids (Sauropterygia, Reptilia) from the Posidonia shale (Toarcian, Lower Jurassic) of Holzmaden, south west Germany. Dissertation, Eberhard−Karls−Universität, TübingenGoogle Scholar
  21. Großmann F (2007) The taxonomic and phylogenetic position of the plesiosauroidea from the Lower Jurassic Posidonia shale of south-west Germany. Palaeontology 50:545–564CrossRefGoogle Scholar
  22. Henderson DM (2006) Floating point: a computational study of buoyancy, equilibrium, and gastroliths in plesiosaurs. Lethaia 39:227–244CrossRefGoogle Scholar
  23. Hesselbo SP, Gröcke DR, Jenkyns HC, Bjerru CJ, Farrimond P, Bell HSM, Green OR (2000) Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406:392–395CrossRefPubMedGoogle Scholar
  24. Hesselbo SP, Pieńkowski G (2011) Stepwise atmospheric carbon-isotope excursion during the Toarcian Oceanic Anoxic Event (Early Jurassic, Polish Basin). Earth Planet Sc Lett 301:365–372CrossRefGoogle Scholar
  25. Hofmann J (1958) Einbettung und Zerfall der Ichthyosaurier im Lias von Holzmaden. Meyniana 6:10–55Google Scholar
  26. Huene F von (1923) Ein neuer Plesiosaurier aus dem oberen Lias Württembergs. Jahresh Ver vaterl Naturkd Wb 79:3–23Google Scholar
  27. Hugi J, Hutchinson MN, Koyabu D, Sánchez-Villagra MR (2012) Heterochronic shifts in the ossification sequences of surface- and subsurface-dwelling skinks are correlated with the degree of limb reduction. Zoology 115:188–198CrossRefPubMedGoogle Scholar
  28. Kear BP (2007) A juvenile pliosauroid plesiosaur (Reptilia: Sauropterygia) from the Lower Cretaceous of South Australia. J Paleontol 81:154–162CrossRefGoogle Scholar
  29. Keller T (1992) « Weichteil-Erhaltung » bei grossen Vertebraten (Ichthyosauriern) des Posidonienschiefers Holmadens (Oberer Lias, Mesozoikum Süddeutschlands). Kaupia 1:23–62Google Scholar
  30. Keller T (2000) Ein Koniferenrest aus dem Posidonienschiefer des Unteren Jura (Schwarzer Jura ε, Unter-Toarcium) von Süddeutschland. Stuttg Beitr Natkd. B Geol Palaeontol 282:1–17Google Scholar
  31. Key MM Jr, Jeffries WB, Voris HK (1995) Epizoic bryozoans, sea snakes, and other nektonic substrates. Bull Mar Sci 56:462–474Google Scholar
  32. Knutsen EM, Druckenmiller PS, Hurum JH (2012) Two new species of long-necked plesiosaurians (Reptilia: Sauropterygia) from the Upper Jurassic (Middle Volgian) Agardhfjellet Formation of central Spitsbergen. Nor Geol Tidsskr 92:187–212Google Scholar
  33. Kubo T, Mitchell MT, Henderson DM (2012) Albertonectes vanderveldei, a new elasmosaur (Reptilia, Sauropterygia) from the Upper Cretaceous of Alberta. J Vert Paleontol 32:557–572CrossRefGoogle Scholar
  34. Lézin C, Andreu B, Pellenard P, Bouchez J-L, Emmanuel L, Fauré P, Landrein P (2013) Geochemical disturbance and paleoenvironmental changes during the Early Toarcian in NW Europe. Chem Geol 341:1–15CrossRefGoogle Scholar
  35. Lindgren J et al (2014) Skin pigmentation provides evidence of convergent melanism in extinct marine reptiles. Nature 506:484–488CrossRefPubMedGoogle Scholar
  36. Lindgren J et al (2015) Interpreting melanin-based colouration through deep time: a critical review. Proc R Soc B 282:20150614CrossRefPubMedPubMedCentralGoogle Scholar
  37. Lingham-Soliar T (2001) The ichthyosaur integument: skin fibers, a means for a strong, flexible and smooth skin. Lethaia 34:287–302CrossRefGoogle Scholar
  38. Lingham-Soliar T, Plodowski G (2007) Taphonomic evidence for high-speed adapted fins in thunniform ichthyosaurs. Naturwissenschaften 94:65–70CrossRefPubMedGoogle Scholar
  39. Lingham-Soliar T, Wesley-Smith J (2008) First investigation of the collagen D-band ultrastructure on fossilized vertebrate integument. Proc R Soc B 275:2207–2212CrossRefPubMedPubMedCentralGoogle Scholar
  40. Liu S, Smith AS, Gu Y, Tan J, Liu CK, Turk G (2015) Computer simulations imply forelimb-dominated underwater flight in plesiosaurs. PLoS Comput Biol 11:e1004605CrossRefPubMedPubMedCentralGoogle Scholar
  41. Long C, Wings O, Xiaohong C, Sander PM (2006) Gastroliths in the Triassic ichthyosaur Panjiangsaurus from China. J Paleontol 80:583–588CrossRefGoogle Scholar
  42. Martill DM (1993) Soupy substrates: a medium for the exceptional preservation of ichthyosaurs of the Posidonia shale (Lower Jurassic) of Germany. Kaupia 2:77–97Google Scholar
  43. Martill DM (1995) An ichthyosaur with preserved soft tissue from the Sinemurian of southern England. Palaeontology 38:897–904Google Scholar
  44. Martin JE, Sawyer JF, Reguero M, Case JA (2007) Occurrence of a young elasmosaurid plesiosaur skeleton from the Late Cretaceous (Maastrichtian) of Antarctica. Online Proceedings of the 10th International Symposium on Antarctic Earth Sciences. Antarctica: a keystone in a changing world. USGS Open-File Report, 1047Google Scholar
  45. Massare JA (1988) Swimming capabilities of Mesozoic marine reptiles: implications for method of predation. Paleobiology 14:187–205CrossRefGoogle Scholar
  46. McHenry CR, Cook AG, Wroe S (2005) Bottom-feeding plesiosaurs. Science 310:75–75CrossRefPubMedGoogle Scholar
  47. Motani R (2002) Swimming speed estimation of extinct marine reptiles: energetic approach revisited. Paleobiology 28:251–262CrossRefGoogle Scholar
  48. O’Gorman JP, Olivero EB, Cabrera DA (2012) Gastroliths associated with a juvenile elasmosaur (Plesiosauria, Elasmosauridae) from the Snow Hill Island Formation (upper Campanian–lower Maastrichtian), Vega Island, Antarctica. Alcheringa 36:531–541CrossRefGoogle Scholar
  49. O’Gorman JP, Olivero EB, Santillana S, Everhart MJ, Reguero M (2014) Gastroliths associated with an Aristonectes specimen (Plesiosauria, Elasmosauridae), López de Bertodano Formation (upper Maastrichtian) Seymour Island (Is. Marambio), Antarctic Peninsula. Cretac Res 50:228–237CrossRefGoogle Scholar
  50. O’Keefe FR (2001a) A cladistic analysis and taxonomic revision of the Plesiosauria (Reptilia: Sauropterygia). Acta Zool Fenn 213:1–63Google Scholar
  51. O’Keefe FR (2001b) Ecomorphology of plesiosaur flipper geometry. J Evolution Biol 14:987–991CrossRefGoogle Scholar
  52. O’Keefe FR (2004) Preliminary description and phylogenetic position of a new plesiosaur (Reptilia: Sauropterygia) from the Toarcian of Holzmaden, Germany. J Vert Paleontol 78:973–988CrossRefGoogle Scholar
  53. O’Keefe FR, Carrano MT (2005) Correlated trends in the evolution of the plesiosaur locomotor system. Paleobiology 31:656–675CrossRefGoogle Scholar
  54. O’Keefe FR, Hiller N (2006) Morphologic and ontogenetic patterns in elasmosaur neck length, with comments on the taxonomic utility of neck length variables. Paludicola 5:206–229Google Scholar
  55. Owen R (1860) On the orders of fossil and recent Reptilia, and their distribution through time. Report of the British Association for the Advancement of Science 1859:153–166Google Scholar
  56. Prauss M, Ligouis B, Luterbacher H (1991) Organic matter and palynomorphs in the 'Posidonienschiefer' (Toarcian, Lower Jurassic) of southern Germany. Geol Soc Lond, Spec Publ 58:335–351CrossRefGoogle Scholar
  57. Riegraf W (1985) Mikrofauna, Biostratigraphie, und Fazies im Unteren Toarcium Südwestdeutschlands und Vergleiche mit benachbarten Gebieten. Tübinger Mikropaläontologische Mitteilungen 3:1–232Google Scholar
  58. Röhl H-J, Schmid-Röhl A, OschmannW FA, Schwark L (2001) The Posidonia Shale (Lower Toarcian) of SW-Germany: an oxygen-depleted ecosystem controlled by sea level and palaeoclimate. Palaeogeogr Palaeoclimatol Palaeoecol 165:27–52CrossRefGoogle Scholar
  59. Röhl H-J, Schmid-Röhl A (2005) Lower Toarcian (Upper Liassic) black shales of the Central European Epicontinental basin: a sequence stratigraphic case study from the SW German Posidonia Shale Deposition of Organic-Carbon-Rich Sediments: Models, Mechanisms, and Consequences. (Society for Sedimentary Geology Special Publication), pp. 165–189Google Scholar
  60. Sachs S, Hornung JJ, Kear BP (2016a) Reappraisal of Europe's most complete Early Cretaceous plesiosaurian: Brancasaurus brancai Wegner, 1914 from the "Wealden facies" of Germany. Peer J 4:e2813CrossRefPubMedPubMedCentralGoogle Scholar
  61. Sachs S, Hornung JJ, Kear BP (2016b) Plesiosaurian fossils from Baltic glacial erratics: evidence of Early Jurassic marine amniotes from the southwestern margin of Fennoscandia. Pp. 149–163. In: Kear BP, Lindgren J, Hurum JH, Milán J, Vajda V (eds.) Mesozoic biotas of Scandinavia and its Arctic territories. Geological Society, London, Special Publications 434.Google Scholar
  62. Sato T, Hasegawa Y, Manabe M (2006) A new elasmosaurid plesiosaur from the Upper Cretaceous of Fukushima, Japan. Palaeontology 49:467–484CrossRefGoogle Scholar
  63. Sander PM (2000) Ichthyosauria: their diversity, distribution and phylogeny. Pal Z 74:1–35CrossRefGoogle Scholar
  64. Sander PM, Rieppel OC, Bucher H (1997) A new pistosaurid (Reptilia: Sauropterygia) from the Middle Triassic of Nevada and its implications for the origin of the plesiosaurs. J Vert Paleontol 17:526–533CrossRefGoogle Scholar
  65. Schmeisser RL, Gillette DD (2009) Unusual occurrence of gastroliths in a polycotylid plesiosaur from the Upper Cretaceous Tropic Shale, southern Utah. PALAIOS 24:453–459CrossRefGoogle Scholar
  66. Schwermann L, Sander PM (2011) Osteologie und Phylogenie von Westphaliasaurus simonsensii: Ein neuer Plesiosauride (Sauropterygia) aus dem Unteren Jura (Pliensbachium) von Sommersell (Kreis Höxter), Nordrhein-Westfalen, Deutschland. Geologie und Paläontologie in Westfalen 79:1–60Google Scholar
  67. Seilacher A (1982) Ammonite shells as habitats in the Posidonia shales of Holzmaden: floats or benthic islands. Neues Jahrb Geol Palaeontol Monatshefte 1982:98–114Google Scholar
  68. Sollas WJ (1881) On a new species of Plesiosaurus (P. conybeari) from the Lower Lias of Charmouth; with observation on P. macrocephalus, Stuchbury, and P. brachycephalus, Owen. Q.J. Geol Soc Lond 37:440–480CrossRefGoogle Scholar
  69. Storrs GW (1997) Morphological and taxonomic clarification of the genus Plesiosaurus. In: Callaway JM, Nicholls EL (eds) Ancient marine reptiles. Academic Press, San Diego, pp 145–190CrossRefGoogle Scholar
  70. Taylor MA (1993) Stomach stones for feeding or buoyancy? The occurrence and function of gastroliths in marine tetrapods. Philosophical Philos Trans R Soc Lond, B 341:163–175CrossRefGoogle Scholar
  71. Taylor MA (2000) Functional significance of bone ballastin in the evolution of buoyancy control strategies by aquatic tetrapods. Hist Biol 14:15–31CrossRefGoogle Scholar
  72. Taylor PD, Ernst A (2008) Bryozoans in transition: the depauperate and patchy Jurassic biota. Palaeogeogr Palaeoclimatol Palaeoecol 263:9–23CrossRefGoogle Scholar
  73. Vincent P (2010) A juvenile plesiosaur specimen from the Lower Jurassic of Holzmaden, Germany. Palaeontographica A 291:45–61CrossRefGoogle Scholar
  74. Vincent P (2011) A re-examination of Hauffiosaurus zanoni, a pliosauroid from the Toarcian (Early Jurassic) of Germany. J Vert Paleontol 31:340–351CrossRefGoogle Scholar
  75. Vincent P, Bardet N, Mattioli E (2013) A new pliosaurid from the Pliensbachian (Early Jurassic) of Normandy (Northern France). Acta Palaeontol Pol 58:471–485Google Scholar
  76. Watson DMS (1911) The Upper Liassic Reptilia. Part III. Microcleidus macropterus (Seeley) and the limbs of Microcleidus homalospondylus (Owen). Memoirs of the Manchester Literary and Philosophical Society 55:1–9Google Scholar
  77. Wegner T (1914) Brancasaurus brancai n. g. n. sp., ein elasmosauride aus dem Wealden Westfalens. Branca-Festschrift 235–305Google Scholar
  78. Welles SP (1943) Elasmosaurid plesiosaurs with description of new material from California and Colorado. Memoirs of the University of California 13:125–254Google Scholar
  79. Welles SP, Bump JD (1949) Alzadasaurus pembertoni, a new elasmosaur from the Upper Cretaceous of South Dakota. J Paleontol 23:521–535Google Scholar
  80. Wings O (2007) A review of gastrolith function with implications for fossil vertebrates and a revised classification. Acta Palaeontol Pol 52:1–16Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.CR2P, UMR 7207, CNRS-MNHN-UPMC, Muséum National d’Histoire NaturelleSorbonne UniversitésParisFrance
  2. 2.UMR 7179 – CNRS, Muséum National d’Histoire Naturelle, Département Adaptations du VivantParisFrance
  3. 3.Department of Earth Sciences, Natural History MuseumLondonUK
  4. 4.Univ Lyon, Université Lyon 1, ENS-Lyon, CNRS, UMR 5276 LGL-TPEVilleurbanneFrance
  5. 5.Staatliches Museum für NaturkundeStuttgartGermany

Personalised recommendations