The Science of Nature

, 104:44 | Cite as

Sexual selection on receptor organ traits: younger females attract males with longer antennae

  • Tamara L. JohnsonEmail author
  • Matthew R. E. Symonds
  • Mark A. Elgar
Original Paper


Sexual selection theory predicts that female choice may favour the evolution of elaborate male signals. Darwin also suggested that sexual selection can favour elaborate receiver structures in order to better detect sexual signals, an idea that has been largely ignored. We evaluated this unorthodox perspective by documenting the antennal lengths of male Uraba lugens Walker (Lepidoptera: Nolidae) moths that were attracted to experimentally manipulated emissions of female sex pheromone. Either one or two females were placed in field traps for the duration of their adult lives in order to create differences in the quantity of pheromone emissions from the traps. The mean antennal length of males attracted to field traps baited with a single female was longer than that of males attracted to traps baited with two females, a pattern consistent with Darwin’s prediction assuming the latter emits higher pheromone concentrations. Furthermore, younger females attracted males with longer antennae, which may reflect age-specific changes in pheromone emission. These field experiments provide the first direct evidence of an unappreciated role for sexual selection in the evolution of sexual dimorphism in moth antennae and raise the intriguing possibility that females select males with longer antennae through strategic emission of pheromones.


Sexual selection Sex pheromones Antenna morphology Mate choice Chemical signals 


Authors’ contributions

T.L.J., M.R.E.S. and M.A.E. conceived the project, analysed the data and prepared the manuscript. T.L.J. collected the data.

Compliance with ethical standards

Data accessibility

The data supporting this article have been uploaded as part of the supplementary material.

Competing interests

The authors declare that they have no competing interests.


Australian Research Council (DP0987360) to MAE.

Supplementary material

114_2017_1466_MOESM1_ESM.pdf (38 kb)
ESM 1 (PDF 38 kb)


  1. Andersson M (1994) Sexual selection. Princeton University Press, New JerseyGoogle Scholar
  2. Ashman KR, McNamara KB, Symonds MRE (2016) Experimental evolution reveals that population density does not affect moth signalling behaviour and antennal morphology. Evol Ecol 30:1009–1021. doi: 10.1007/s10682-016-9857-0 CrossRefGoogle Scholar
  3. Bates D, Maechler M, Bolker B, Walker S (2014) lme4: Linear mixed-effects models using Eigen and S4. R package version 11–7. URL:
  4. Bernays EA, Chapman RF (1998) Phenotypic plasticity in numbers of antennal chemoreceptors in a grasshopper: effects of food. J Comp Physiol A 183:69–76. doi: 10.1007/s003590050235 CrossRefGoogle Scholar
  5. Berndt LA, Allen GR (2010) Biology and pest status of Uraba lugens Walker (Lepidoptera: Nolidae) in Australia and New Zealand. Aust J Entomol 49:268–277. doi: 10.1111/j.1440-6055.2010.00760.x CrossRefGoogle Scholar
  6. Chapman RF (1982) Chemoreception: the significance of receptor numbers. Adv Insect Physiol 16:247–356. doi: 10.1016/S0065-2806(08)60155-1 CrossRefGoogle Scholar
  7. Darwin C (1871) The descent of man and selection in relation to sex. Murray, LondonCrossRefGoogle Scholar
  8. Faucheux MJ (1984) Morphology and distribution of antennal sensilla in the female and male clothes moth, Tineola bisselliella Humm. (Lepidoptera: Tineidae). Can J Zool 63:355–362. doi: 10.1139/z85-054 CrossRefGoogle Scholar
  9. Gibb AR et al (2008) Major sex pheromone components of the Australian gum leaf skeletoniser Uraba lugens: (10E,12Z)-Hexadecadien-1-yl acetate and (10E,12Z)-Hexadecadien-1-ol. J Chem Ecol 34:1125–1133. doi: 10.1007/s10886-008-9523-2 CrossRefPubMedGoogle Scholar
  10. Gill KP, van Wilgenburg E, Macmillan DL, Elgar MA (2013) Density of antennal sensilla influences efficacy of communication in a social insect. Am Nat 182:834–840. doi: 10.1086/673712 CrossRefPubMedGoogle Scholar
  11. Girard MB, Endler JA (2014) Peacock spiders. Curr Biol 24:R588–R590. doi: 10.1016/j.cub.2014.05.026 CrossRefPubMedGoogle Scholar
  12. Gómez VRC, Carrasco JV (2008) Morphological characteristics of antennal sensilla in Talponia batesi (Lepidoptera: Tortricidae). Ann Entomol Soc Am 101:181–188. doi: 10.1603/0013-8746(2008)101[181:MCOASI]2.0.CO;2 CrossRefGoogle Scholar
  13. Greenfield MD (1981) Moth sex pheromones: an evolutionary perspective. Fla Entomol 64:4–17. doi: 10.2307/3494597 CrossRefGoogle Scholar
  14. Greenfield MD (2002) Signalers and receivers: mechanisms and evolution of arthropod communication. Oxford University Press, OxfordGoogle Scholar
  15. Gwynne DT, Bailey WJ (1999) Female-female competition in katydids: sexual selection for increased sensitivity to a male signal? Evolution 53:546–551. doi: 10.2307/2640790 CrossRefPubMedGoogle Scholar
  16. Harari AR, Zahavi T, Thiéry D (2011) Fitness cost of pheromone production in signaling female moths. Evolution 65:1572–1582. doi: 10.1111/j.1558-5646.2011.01252.x CrossRefPubMedGoogle Scholar
  17. Kuznetsova A, Brockhoff PB, Christensen RHB (2014) lmerTest: Tests in linear mixed effects models. R package version 20–20. URL:
  18. Lee J-K, Strausfeld NJ (1990) Structure, distribution and number of surface sensilla and their receptor cells on the olfactory appendage of the male moth Manduca sexta. J Neurocytol 19:519–538. doi: 10.1007/BF01257241 CrossRefPubMedGoogle Scholar
  19. Lloyd JE (1979) Sexual selection in luminescent beetles. In: Blum MS, Blum NA (eds) Sexual selection and reproductive competition in insects. Academic, New York, pp 293–342Google Scholar
  20. Löfstedt C, Wahlberg N, Millar JG (2016) Evolutionary patterns of pheromone diversity in Lepidoptera. In: Allison JD, Carde RT (eds) Pheromone communication in moths: evolution, behavior and application. University of California Press, Oakland, pp 43–78Google Scholar
  21. Maynard Smith J, Harper D (2003) Animal signals. Oxford University Press, OxfordGoogle Scholar
  22. Mori BA, Evenden ML (2013) When mating disruption does not disrupt mating: fitness consequences of delayed mating in moths. Entomol Exp Appl 146:50–65. doi: 10.1111/j.1570-7458.2012.01309.x CrossRefGoogle Scholar
  23. O’Hara RB, Kotze DJ (2010) Do not log-transform count data. Methods Ecol Evol 1:118–122. doi: 10.1111/j.2041-210X.2010.00021.x CrossRefGoogle Scholar
  24. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL:
  25. Sanes JR, Hildebrand JG (1976a) Origin and morphogenesis of sensory neurons in an insect antenna. Dev Biol 51:300–319. doi: 10.1016/0012-1606(76)90145-7 CrossRefPubMedGoogle Scholar
  26. Sanes JR, Hildebrand JG (1976b) Structure and development of antennae in a moth, Manduca sexta. Dev Biol 51:282–299. doi: 10.1016/0012-1606(76)90144-5 CrossRefGoogle Scholar
  27. Schal C, Charlton RE, Cardé RT (1987) Temporal patterns of sex pheromone titers and release rates in Holomelina lamae (Lepidoptera: Arctiidae). J Chem Ecol 13:1115–1129. doi: 10.1007/BF01020542 CrossRefPubMedGoogle Scholar
  28. Schneider D (1964) Insect antennae. Annu Rev Entomol 9:103–122. doi: 10.1146/annurev.en.09.010164.000535 CrossRefGoogle Scholar
  29. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. doi: 10.1038/nmeth.2089 CrossRefPubMedGoogle Scholar
  30. Searcy WA, Andersson M (1986) Sexual selection and the evolution of song. Annu Rev Ecol Syst 17:507–533. doi: 10.1146/ CrossRefGoogle Scholar
  31. Simmons LW (2015) Sexual signalling by females: do unmated females increase their signalling effort? Biol Lett 11:20150298. doi: 10.1098/rsbl.2015.0298 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Skaug H, Fournier D, Nielsen A (2006) glmmADMB: Generalized linear mixed models using AD Model Builder. URL:
  33. Spaethe J, Brockmann A, Halbig C, Tautz J (2007) Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften 94:733–739. doi: 10.1007/s00114-007-0251-1 CrossRefPubMedGoogle Scholar
  34. Steinbrecht RA (1996) Structure and function of insect olfactory sensilla. In: Bock GR, Cardew G (eds) Ciba foundation symposium 200-olfaction in mosquito-host interactions. Wiley, Chichester, pp 158–183. doi: 10.1002/9780470514948.ch13 Google Scholar
  35. Stevens M (2013) Sensory ecology, behaviour, and evolution. Oxford University Press, OxfordCrossRefGoogle Scholar
  36. Symonds MRE, Johnson TL, Elgar MA (2012) Pheromone production, male abundance, body size, and the evolution of elaborate antennae in moths. Ecol Evol 2:227–246. doi: 10.1002/ece3.81 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Umbers KDL, Symonds MRE, Kokko H (2015) The mothematics of female pheromone signaling: strategies for aging virgins. Am Nat 185:417–432. doi: 10.1086/679614 CrossRefPubMedGoogle Scholar
  38. Wilkinson GS, Reillo PR (1994) Female choice response to artificial selection on an exaggerated male trait in a stalk-eyed fly. Proc R Soc Lond B Biol Sci 255:1–6. doi: 10.1098/rspb.1994.0001 CrossRefGoogle Scholar
  39. Wyatt TD (2014) Pheromones and animal behavior: chemical signals and signatures. Cambridge University Press, UKGoogle Scholar
  40. Yan X-Z, Deng C-P, Sun X-J, Hao C (2014) Effects of various degrees of antennal ablation on mating and oviposition preferences of the diamondback moth, Plutella xylostella L. J Integr Agric 13:1311–1319. doi: 10.1016/s2095-3119(14)60762-0 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of BiosciencesUniversity of MelbourneMelbourneAustralia
  2. 2.Centre for Integrative Ecology, School of Life and Environmental SciencesDeakin UniversityBurwoodAustralia

Personalised recommendations