The Science of Nature

, 104:9 | Cite as

A new fossil from the mid-Paleocene of New Zealand reveals an unexpected diversity of world’s oldest penguins

  • Gerald MayrEmail author
  • Vanesa L. De Pietri
  • R. Paul Scofield
Original Paper


We describe leg bones of a giant penguin from the mid-Paleocene Waipara Greensand of New Zealand. The specimens were found at the type locality of Waimanu manneringi and together with this species they constitute the oldest penguin fossils known to date. Tarsometatarsus dimensions indicate a species that reached the size of Anthropornis nordenskjoeldi, one of the largest known penguin species. Stem group penguins therefore attained a giant size very early in their evolution, with this gigantism existing for more than 30 million years. The new fossils are from a species that is phylogenetically more derived than Waimanu, and the unexpected coexistence of Waimanu with more derived stem group Sphenisciformes documents a previously unknown diversity amongst the world’s oldest penguins. The characteristic tarsometatarsus shape of penguins evolved early on, and the significant morphological disparity between Waimanu and the new fossil conflicts with recent Paleocene divergence estimates for penguins, suggesting an older, Late Cretaceous, origin.


Fossil birds Sphenisciformes Waipara Greensand Waimanu Crossvallia 



We are indebted to Leigh Love, who collected the specimens and donated them to Canterbury Museum. We also thank Al Mannering for preparation work and Chris Clowes for data on the dinoflagellate fauna. Marío Chávez Hoffmeister provided a nexus file of his phylogenetic data set. Comments from Ursula Göhlich, Carolina Acosta-Hospitaleche, and four anonymous reviewers improved the text.

Supplementary material

114_2017_1441_MOESM1_ESM.nex (14 kb)
ESM 1 (NEX 13 kb)


  1. Acosta Hospitaleche C (2014) New giant penguin bones from Antarctica: systematic and paleobiological significance. Comptes Rendus Palevol 13:555–560CrossRefGoogle Scholar
  2. Acosta Hospitaleche C, Olivero E (2016) Re-evaluation of the fossil penguin Palaeeudyptes gunnari from the Eocene Leticia formation, Argentina: additional material, systematics and palaeobiology. Alcheringa 40:373–382CrossRefGoogle Scholar
  3. Ando T, Fordyce RE (2014) Evolutionary drivers for flightless, wing-propelled divers in the Northern and Southern Hemispheres. Palaeogeogr Palaeoclimatol Palaeoecol 400:50–61CrossRefGoogle Scholar
  4. Baker AJ, Pereira SL, Haddrath OP, Edge KA (2006) Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proc Roy Soc London B: Biol Sci 273:11–17CrossRefGoogle Scholar
  5. Browne GH, Lawrence MJF, Mortimer N, Clowes CD, Morgans HEG, Hollis CJ, Beu AG, Black JA, Sutherland R, Bache F (2016) Stratigraphy of Reinga and Aotea basins, NW New Zealand: constraints from dredge samples on regional correlations and reservoir character. New Zeal J Geol Geophys 59:396–415CrossRefGoogle Scholar
  6. Chávez Hoffmeister M (2014) Phylogenetic characters in the humerus and tarsometatarsus of penguins. Pol Polar Res 35:469–496Google Scholar
  7. Clarke JA, Ksepka DT, Stucchi M, Urbina M, Giannini N, Bertelli S, Narváez Y, Boyd CA (2007) Paleogene equatorial penguins challenge the proposed relationship between penguin biogeography, diversity, and Cenozoic climate change. Proc Natl Acad Sci U S A 104:11545–11550CrossRefPubMedPubMedCentralGoogle Scholar
  8. Clarke JA, Ksepka DT, Salas-Gismondi R, Altamirano AJ, Shawkey MD, D’Alba L, Vinther J, DeVries TJ, Baby P (2010) Fossil evidence for evolution of the shape and color of penguin feathers. Science 330:954–957CrossRefPubMedGoogle Scholar
  9. Fordyce RE, Thomas DB (2011) Kaiika maxwelli, a new Early Eocene archaic penguin (Sphenisciformes, Aves) from Waihao Valley, South Canterbury, New Zealand. New Zeal J Geol Geop 54:43–51CrossRefGoogle Scholar
  10. Goloboff PA (1993) NONA, version 2.0. Published by the author, S. M. de Tucumán, ArgentinaGoogle Scholar
  11. Jadwiszczak P (2001) Body size of Eocene Antarctic penguins. Pol Polar Res 22:147–158Google Scholar
  12. Jadwiszczak P (2015) Another look at tarsometatarsi of early penguins. Pol Polar Res 36:343–354Google Scholar
  13. Jadwiszczak P, Acosta Hospitaleche C, Reguero M (2013) Redescription of Crossvallia unienviella: the only Paleocene Antarctic penguin. Ameghiniana 50:545–553CrossRefGoogle Scholar
  14. Jarvis ED, Mirarab S, Aberer AJ et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320–1331CrossRefPubMedPubMedCentralGoogle Scholar
  15. Kato A, Ropert-Coudert Y, Grémillet D, Cannell B (2006) Locomotion and foraging strategy in foot-propelled and wing-propelled shallow-diving seabirds. Mar Ecol Prog Ser 308:293–301CrossRefGoogle Scholar
  16. Ksepka DT, Ando T (2011) Penguins past, present, and future: trends in the evolution of the Sphenisciformes. In: Dyke G, Kaiser G (eds) Living dinosaurs: the evolutionary history of modern birds. Wiley, Chichester, pp 155–186CrossRefGoogle Scholar
  17. Ksepka DT, Fordyce RE, Ando T, Jones CM (2012) New fossil penguins (Aves, Sphenisciformes) from the Oligocene of New Zealand reveal the skeletal plan of stem penguins. J Vert Paleontol 32:235–254CrossRefGoogle Scholar
  18. Mayr G (2016) Avian evolution: the fossil record of birds and its paleobiological significance. Wiley-Blackwell, ChichesterCrossRefGoogle Scholar
  19. Mitchell KJ, Cooper A, Phillips MJ (2015) Comment on “whole-genome analyses resolve early branches in the tree of life of modern birds”. Science 349:1460CrossRefPubMedGoogle Scholar
  20. Myrcha A, Jadwiszczak P, Tambussi CP, Noriega JI, Gaździcki A, Tatur A, del Valle RA (2002) Taxonomic revision of Eocene Antarctic penguins based on tarsometatarsal morphology. Pol Polar Res 23:5–46Google Scholar
  21. Nixon KC (2002) WinClada, version 1.00.08. IthacaGoogle Scholar
  22. Prum RO, Berv JS, Dornburg A, Field DJ, Townsend JP, Lemmon EM, Lemmon AR (2015) A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526:569–573CrossRefPubMedGoogle Scholar
  23. Simpson GG (1946) Fossil penguins. Bull Am Mus Nat Hist 87:1–99Google Scholar
  24. Slack KE, Jones CM, Ando T, Harrison GL, Fordyce RE, Arnason U, Penny D (2006) Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Mol Biol Evol 23:1144–1155CrossRefPubMedGoogle Scholar
  25. Tambussi CP, Reguero MA, Marenssi SA, Santillana SN (2005) Crossvallia unienwillia, a new Spheniscidae (Sphenisciformes, Aves) from the late Paleocene of Antarctica. Geobios 38:667–675CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Ornithological SectionSenckenberg Research Institute and Natural History Museum FrankfurtFrankfurt am MainGermany
  2. 2.Canterbury MuseumChristchurchNew Zealand

Personalised recommendations