The Science of Nature

, 104:7 | Cite as

Ant-lepidopteran associations along African forest edges

  • Alain Dejean
  • Frédéric Azémar
  • Michel Libert
  • Arthur Compin
  • Bruno Hérault
  • Jérôme Orivel
  • Thierry Bouyer
  • Bruno Corbara
Original Paper


Working along forest edges, we aimed to determine how some caterpillars can co-exist with territorially dominant arboreal ants (TDAAs) in tropical Africa. We recorded caterpillars from 22 lepidopteran species living in the presence of five TDAA species. Among the defoliator and/or nectarivorous caterpillars that live on tree foliage, the Pyralidae and Nymphalidae use their silk to protect themselves from ant attacks. The Notodontidae and lycaenid Polyommatinae and Theclinae live in direct contact with ants; the Theclinae even reward ants with abundant secretions from their Newcomer gland. Lichen feeders (lycaenid; Poritiinae), protected by long bristles, also live among ants. Some lycaenid Miletinae caterpillars feed on ant-attended membracids, including in the shelters where the ants attend them; Lachnocnema caterpillars use their forelegs to obtain trophallaxis from their host ants. Caterpillars from other species live inside weaver ant nests. Those of the genus Euliphyra (Miletinae) feed on ant prey and brood and can obtain trophallaxis, while those from an Eberidae species only prey on host ant eggs. Eublemma albifascia (Erebidae) caterpillars use their thoracic legs to obtain trophallaxis and trophic eggs from ants. Through transfer bioassays of last instars, we noted that herbivorous caterpillars living in contact with ants were always accepted by alien conspecific ants; this is likely due to an intrinsic appeasing odor. Yet, caterpillars living in ant shelters or ant nests probably acquire cues from their host colonies because they were considered aliens and killed. We conclude that co-evolution with ants occurred similarly in the Heterocera and Rhopalocera.


Alchornea Euphorbiaceae Cuckoo strategy Lepidoptera Myrmecophily Territorially dominant arboreal ants 



We are grateful to Jean-Louis Amiet (University Yaounde I, Cameroon); Dr. Ian Richardson (Durfort Lacapelette, France); Drs. Joël Minet and Jacques Pierre (Museum National d’Histoire Naturelle, Paris, France); and Dr. Martin R. Honey (Natural History Museum, London, UK) for information and identification of Lepidoptera specimens; and to Andrea Yockey-Dejean for proofreading the manuscript.

Supplementary material

114_2016_1424_MOESM1_ESM.mpg (9 mb)
ESM 1 (MPG 9190 kb)
114_2016_1424_MOESM2_ESM.mpg (9.5 mb)
ESM 2 (MPG 9762 kb)
114_2016_1424_MOESM3_ESM.mpg (9 mb)
ESM 3 (MPG 9198 kb)
114_2016_1424_MOESM4_ESM.mpg (9.5 mb)
ESM 4 (MPG 9776 kb)


  1. Akino T (2008) Chemical strategies to deal with ants: a review of mimicry, camouflage, propaganda and phytomimesis by ants (Hymenoptera: Formicidae) and other arthropods. Myrmecol News 11:173–181Google Scholar
  2. Atsatt PR (1981) Lycaenid butterflies and ants: selection for enemy-free space. Amer Nat 118:638–654CrossRefGoogle Scholar
  3. Bampton I (1995) A discussion on the larval food of the subfamily Lipteninae (Lepidoptera, Lycaenidae). Metamorphosis 6:62–166Google Scholar
  4. Bächtold A, Alves-Silva E, Kaminski LA, Del-Claro K (2014) The role of tending ants in host plant selection and egg parasitism of two facultative myrmecophilous butterflies. Naturwissenschaften 101:913–919CrossRefPubMedGoogle Scholar
  5. Bouyer T (1997) Contribution à la révision du genre Hewitsonia avec description d’une sous-espèce et de 4 espèces nouvelles. Études sur les Lycaenidae: no. 4. (Lepidoptera, Lycaenidae). Lambillionea 97:82–98Google Scholar
  6. Boyle JH, Kaliszewska ZA, Espeland M, Suderman TR, Fleming J, Heath A, Pierce NE (2015) Phylogeny of the Aphnaeinae: myrmecophilous African butterflies with carnivorous and herbivorous life histories. Syst Entomol 40:169–182CrossRefGoogle Scholar
  7. Callaghan CJ (1992) Biology of epiphyll feeding butterflies in a Nigerian cola forest (Lycaenidae: Lipteninae). J Lepidopt Soc 46:203–214Google Scholar
  8. Callaghan CJ (1993) Notes on the biology of a myrmecophilous African lycaenid, Aphnaeus adamsi Stempffer (Lepidoptera, Lycaenidae). Bull Soc Entomol Fr 97:339–342Google Scholar
  9. Clark GC, Dickson CGC (1971) Life histories of the South African lycaenid butterflies. Purnell and Sons, Cape TownGoogle Scholar
  10. Collet J-Y (1996) The tree and the ants. Video movie 50′; The Discovery Channel
  11. Collet J-Y (2004) Secrets of the African jungle—ants. Video movie 50′, The Discovery Channel;
  12. Cripps C, Jackson THE (1940) The life history of Lachnocnema bibulus (fab.) in Kenya (Lepidopt., Lycaenidae), with a note on the larval gland by Dr H. Eltringham, FRS. Trans R Entomol Soc London 90:449–453CrossRefGoogle Scholar
  13. d’Ettorre P, Lenoir A (2010) Nestmate recognition. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford, pp 194–209Google Scholar
  14. Daniels H, Gottsberger G, Fiedler K (2005) Nutrient composition of larval nectar secretions from three species of myrmecophilous butterflies. J Chem Ecol 31:2805–2821CrossRefPubMedGoogle Scholar
  15. Dejean A, Azémar F, Roux O (2014) An invasive ant species counterattacks marabunta raids. C R Biol 337:474–479CrossRefPubMedGoogle Scholar
  16. Dejean A, Beugnon G (1996) Host-ant trail following by myrmecophilous larvae of Liphyrinae (Lepidoptera, Lycaenidae). Oecologia 106:57–62CrossRefPubMedGoogle Scholar
  17. Dejean A, Corbara B (2014) Reactions by army ant workers to nestmates having had contact with sympatric ant species. C R Biol 337:642–645CrossRefPubMedGoogle Scholar
  18. Dejean A, Corbara B, Orivel J, Leponce M (2007) Rainforest canopy ants: the implications of territoriality and predatory behavior. Funct Ecosyst Commun 1:105–120Google Scholar
  19. Dejean A, Gibernau M (2000) A rainforest ant mosaic: the edge effect. Sociobiology 35:385–401Google Scholar
  20. Dejean A, Orivel J, Azémar F, Hérault B, Corbara B (2016) A cuckoo-like parasitic moth leads African weaver ant colonies to their ruin. Sci Rep 6:23778CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dejean A, Ryder S, Bolton B, Compin A, Leponce M, Azémar F, Céréghino R, Orivel J, Corbara B (2015) How territoriality and host-tree taxa determine the structure of ant mosaics. Sci Nat 102:33CrossRefGoogle Scholar
  22. DeVries PJ (1991) Foam barriers, a new defense against ants for milkweed butterfly caterpillars (Nymphalidae: Danainae). J Res Lepidopt 30:261–266Google Scholar
  23. Dodd FP (1912) Some remarkable ant-friend Lepidoptera. Trans Entomol Soc London 1911:577–590Google Scholar
  24. Dupont ST, Zemeitat DS, Lohman DJ, Pierce NE (2016) The setae of parasitic Liphyra brassolis butterfly larvae form a flexible armour for resisting attack by their ant hosts (Lycaenidae: Lepidoptera). Biol J Linn Soc 117:607–619CrossRefGoogle Scholar
  25. Farquharson CO (1921) Five years’ observation (1914-1918) on the bionomics of southern Nigerian insects, chiefly directed to the investigation of lycaenid life-histories and to the relation of Lycaenidae, Diptera, and other insects to ants. Trans Entomol Soc London 1921:319–448Google Scholar
  26. Fiedler K (1991) Systematic, evolutionary, and ecological implications of myrmecophily within the Lycaenidae (Insecta: Lepidoptera: Papilionoidea). Bonner Zool Monogr 31:1–210Google Scholar
  27. Fiedler K (1994) Lycaenid butterflies and plants: is myrmecophily associated with amplified host-plant diversity? Ecol Entomol 19:79–82CrossRefGoogle Scholar
  28. Fiedler K (2012) The host genera of ant-parasitic Lycaenidae butterflies: a review. Psyche:ID 153975Google Scholar
  29. Fiedler K, Maschwitz U (1989) The symbiosis between the weaver ant, Oecophylla smaragdina, and Anthene emolus, an obligate myrmecophilous lycaenid butterfly. J Nat Hist 23:833–846CrossRefGoogle Scholar
  30. Fitzgerald TD (1996) The tent caterpillars. Cornell University Press, Ithaca, NYGoogle Scholar
  31. Foottit RG, Adler PH (2009) Insect biodiversity, John Wiley & Sons, New YorkGoogle Scholar
  32. Forister ML, Gompert Z, Nice CC, Forister GW, Fordyce JA (2011) Ant association facilitates the evolution of diet breadth in a lycaenid butterfly. Proc R Soc B 278:1539–1547CrossRefPubMedGoogle Scholar
  33. Herbison-Evans D, Crossley SA (2016) Cardamyla carinentalis Walker, 1859 (Pyralini, Pyralinae, Pyralidae, Pyraloidea).
  34. Jackson THE (1947) The early stages of some African Lycaenidae (Lepidoptera: Rhopalocera). Proc R Entomol Soc London A 22:44–48Google Scholar
  35. Kaliszewska ZA, Lohman DJ, Sommer K, Adelson G, Rand DB, Mathew J, Talavera G, Pierce NE (2015) When caterpillars attack: biogeography and life history evolution of the Miletinae (Lepidoptera: Lycaenidae). Evolution 69:571–588CrossRefPubMedGoogle Scholar
  36. Kaminski LA, Freitas AVL, Oliveira PS (2010) Interaction between mutualisms: ant-tended butterflies exploit enemy-free space provided by ant-treehopper associations. Amer Nat 176:322–334CrossRefGoogle Scholar
  37. Kemner NA (1923) Hyphaenosymphilie, eine neue merkwiirdige art von myrmekophilie bei einem neuen myrmeckophilen schmetterling (Wurthia aurivillii n. sp.) aus Java beobachtet. Arkiv Zool 15:1–28Google Scholar
  38. Lamborn WA (1914) On the relationship between certain west African insects, especially ants, Lycaenidae and Homoptera. Trans Entomol Soc London 1913:436–498Google Scholar
  39. Leclerc J-B, Detrain C (2016) Ants detect but do not discriminate diseased workers within their nest. Sci Nat 103:70CrossRefGoogle Scholar
  40. Lenoir A, D’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Annu Rev Entomol 46:573–599CrossRefPubMedGoogle Scholar
  41. Libert M (1999) Révision des Epitola (l. s.) - Révision des genres Epitola Westwood, Hypophytala Clench et Stempfferia Jackson, et description de trois nouveaux genres (Lepidoptera, Lycaenidae). ABRI-Lambillionea 1–227Google Scholar
  42. Libert M (2010) Révision des Anthene africains (Lepidoptera, Lycaenidae). ABRI-Lambillionea:1–420Google Scholar
  43. Libert M (2016) African Liphyrini: updating the taxonomy (Lepidoptera, Lycaenidae). ABRI- Libert M Ed., MJBSAS-Librairie Top Duck, Amboise, p 1–129Google Scholar
  44. Martins DJ, Collins SC, Congdon C, Pierce NE (2013) Association between the African lycaenid, Anthene usamba, and an obligate acacia ant, Crematogaster mimosae. Biol J Linn Soc 109:302–312CrossRefGoogle Scholar
  45. Mavar-Manga H, Lejoly J, Quetin-Leclercq J, Schmelzer GH (2007) Alchornea cordifolia (Schumach. & Thonn.) Müll.Arg. In: Schmelzer, GH, Gurib-Fakim A (Editors), Plant Resources of Tropical Africa, Wageningen, The Netherlands,
  46. Moss JT (1989) Observations of Hypolycaena phorbas phorbas (Fabricius) (Lepidoptera: Lycaenidae) on Carlisle Island, Queensland. Aust Entomol Mag 16:85–86Google Scholar
  47. Oliver JC, Stein LR (2011) Evolution of influence: signaling in a lycaenid-ant interaction. Evol Ecol 25:1205–1216CrossRefGoogle Scholar
  48. Parsons MJ (1999) The butterflies of Papua New Guinea: their systematics and biology. Academic Press, LondonGoogle Scholar
  49. Panis A (1974) Action prédatrice d’Eublemma scitula (Lepidoptera Noctuidae, Erastriinae) dans le sud de la France. Entomophaga 19:493–500CrossRefGoogle Scholar
  50. Passera L, Aron S (2005) Les fourmis: comportement, organisation sociale et évolution. Les Presses scientifiques du CNRC, OttawaGoogle Scholar
  51. Pierce NE (1995) Predatory and parasitic Lepidoptera: carnivores living on plants. J Lepidopt Soc 49:412–453Google Scholar
  52. Pierce NE, Braby MF, Heath A, Lohman DJ, Mathew J, Rand DA, Travassos MA (2002) The ecology and evolution of ant association in the Lycaenidae (Lepidoptera). Annu Rev Entomol 47:733–771CrossRefPubMedGoogle Scholar
  53. Pike N (2011) Using false discovery rates for multiple comparisons in ecology and evolution. Met Ecol Evol 2:278–282CrossRefGoogle Scholar
  54. Regier JC, Mitter C, Solis M, Hayden J, Landry B, Nuss M, Simonsen T, Yen S, Zwick A, Cummings M (2012) A molecular phylogeny for the pyraloid moths (Lepidoptera: Pyraloidea) and its implications for higher-level classification. Syst Entomol 37:635–656CrossRefGoogle Scholar
  55. Rifflet A, Tene N, Orivel J, Treilhou M, Dejean A, Vetillard A (2011) Paralyzing action from a distance in an arboreal African ant species. PLoS One 6:e28571CrossRefPubMedPubMedCentralGoogle Scholar
  56. Robinson CS, Tuck KR, Shaffer M (1994) A field guide to the smaller moths of South-East Asia. Malaysia Nature Society, Art Printing Works, Kuala Lumpur, MalaysiaGoogle Scholar
  57. Roepke W (1916) Eine neue myrmekophile Lepidoptere aus Java (Wurthia myrmecophila n. g., n. sp.). Zoolog Mededeel 2:141–146Google Scholar
  58. Roessingh P (1990) Chemical trail marker from silk of Yponomeuta cagnagellus. J Chem Ecol 16:2203–2216CrossRefPubMedGoogle Scholar
  59. Rosta M, Blassmann K (2009) Insects had it first: surfactants as a defence against predators. Proc R Soc London, B 276:633–638CrossRefGoogle Scholar
  60. Roux O, Céréghino R, Solano PJ, Dejean A (2011) Caterpillars and fungal pathogens: two co-occurring parasites of an ant-plant mutualism. PLoS One 6:e20538CrossRefPubMedPubMedCentralGoogle Scholar
  61. Roux O, Martin J-M, Tene Ghomsi N, Dejean A (2009) Non-lethal water-based removal-reapplication technique for the cuticular compounds of ants. J Chem Ecol 35:904–912CrossRefPubMedGoogle Scholar
  62. Roux O, Rossi V, Céréghino R, Compin A, Martin J-M, Dejean A (2013) How to coexist with fire ants: the roles of behaviour and cuticular compounds. Behav Proc 98:51–57CrossRefGoogle Scholar
  63. Samson C, Smart P (1980) A review of the genus Liphyra (Lepidoptera: Lycaenidae) of Indo-Australia, with descriptions of two new subspecies from the Solomon archipelago. The Aurelian 1:6–16Google Scholar
  64. Seth-Smith DW (1938) Life histories of some butterflies in the northern territories, gold coast (Lepid.). Proc R Entomol Soc London A 13:141–154Google Scholar
  65. Smedley SR, Schroeder FC, Weibel DB, Meinwald J, Lafleur KA, Renwick JA, Rutowski R, Eisner T (2002) Mayolenes: labile defensive lipids from the glandular hairs of a caterpillar (Pieris rapae). Proc Natl Acad Sci U S A 99:6822–6827CrossRefPubMedPubMedCentralGoogle Scholar
  66. Solis MA, Maes KVN (2002) Preliminary phylogenetic analysis of the subfamilies of Crambidae (Pyraloidea Lepidoptera). Belg J Entomol 4:53–95Google Scholar
  67. Tokeshi M, Yoko-O M, Daud JRP, Domits M (2007) Hypolycaena erylus feeding on mangrove apple and attended by Oecophylla weaver ants, in North Sulawesi, Indonesia (Lepidoptera: Lycaenidae). Trop Lepidopt 17:35–36Google Scholar
  68. Tschinkel WR (2011) Back to basics: sociometry and sociogenesis of ant societies (hymenoptera: Formicidae). Myrmecol News 14:49–54Google Scholar
  69. Van Wilgenburg E, Symonds MRE, Elgar MA (2011) Evolution of cuticular hydrocarbon diversity in ants. J Evol Biol 24:1188–1198CrossRefPubMedGoogle Scholar
  70. Vu NT, Eastwood R, Nguyen CT, Pham LV (2006) The fig wax scale Ceroplastes rusci (Linnaeus) (Homoptera: Coccidae) in south-east Vietnam: pest status, life history and biological trials with Eublemma amabilis Moore (Lepidoptera: Noctuidae). Entomol Res 36:196–201CrossRefGoogle Scholar
  71. Williams MC (2008-2016) Butterflies and skippers of the Afrotropical region (Papilionoidea and Hesperioidea). File L – Aphnaeini (Lycaenidae). File M – Lycaeninae, Polyommatinae (Lycaenidae). File N – Miletinae (Lycaenidae).
  72. Young AM (1986) Natural history notes on Brassolis isthmia bates Lepidoptera: Nymphalidae: Brassolinae in northeastern Costa Rica. J Res Lepidopt 24:385–392Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Alain Dejean
    • 1
    • 2
  • Frédéric Azémar
    • 1
  • Michel Libert
    • 3
  • Arthur Compin
    • 1
  • Bruno Hérault
    • 2
  • Jérôme Orivel
    • 2
  • Thierry Bouyer
    • 4
  • Bruno Corbara
    • 5
    • 6
  1. 1.Ecolab, Université de Toulouse, CNRS, INPT, UPS, UPS-ECOLABToulouseFrance
  2. 2.CNRS, UMR EcoFoG, AgroParisTech, Cirad, INRAUniversité des Antilles, Université de GuyaneKourouFrance
  3. 3.RouenFrance
  4. 4.ChênéeBelgium
  5. 5.CNRS, UMR Laboratoire Microorganismes, Génome et EnvironnementUniversité Blaise Pascal, Complexe Scientifique des CézeauxAubière CedexFrance
  6. 6.Université Clermont Auvergne, Université Blaise Pascal (LMGE)Clermont-FerrandFrance

Personalised recommendations