The Science of Nature

, 103:87 | Cite as

Variation in nesting behavior of eight species of spider mites, Stigmaeopsis having sociality

  • Yutaka Saito
  • Yan-Xuan Zhang
  • Kotaro Mori
  • Katsura Ito
  • Yukie Sato
  • Anthony R. Chittenden
  • Jian-Zhen Lin
  • Younghae Chae
  • Takane Sakagami
  • Ken Sahara
Original Paper

Abstract

Nesting behavior is considered to be an important element of social living in animals. The spider mites belonging to the genus Stigmaeopsis spend their lives within nests produced from silk threads. Several of these species show cooperative sociality, while the others are subsocial. In order to identify the origins of this social behavior, comparisons of nest sizes, nesting behaviors (making nests continuously or separately), and their associated traits (fecal deposition patterns) were made for eight cogeneric Stigmaeopsis species showing various levels of social development. All of these species inhabit bamboo plants (Poaceae). We initially addressed the proximate factor of nest size variation. The variation in nest size of the eight species corresponded well with the variation in dorsal seta sc1 length, suggesting that nest size variation among species may have a genetic basis. The time spent within a nest (nest duration) increased with nest size on the respective host plants. Nest arrangement patterns varied among species showing different sized nests: Large nest builders continuously extended their nests, while middle and small nest-building species built new separate nests, which resulted in different social interaction times among species, and is thought to be closely related to social development. Fecal deposition behaviors also varied among Stigmaeopsis species, suggesting diversity in anti-predatory adaptations. Finally, we discuss how the variation in sociality observed within this genus is likely the result of nest size variation that initially evolved as anti-predator strategies.

Keywords

Anti-predator adaptation Convergence Divergence Life type Tetranychidae 

Notes

Acknowledgments

We thank S. Akimoto, X. Wang, J. Ji, X. Chen, L. Sun, Y. Uchida, and Q. Y. Liu for their help and advice. This study was supported by the Fujian Council of Natural Science Foundation (2014J01108), Science and Technology Innovation Team of Fujian Academy of Agricultural Science (CXTD-2-1313), China Recruitment Program of Global Experts (Foreign Experts) (2012-323), Ministry of Agriculture Special Fund for Scientific Research in the Public Interest (201103020), the 863 program (2011AA10A201), the Fujian Council Fund for Scientific Research in the Public Interest (2014R1024-4), the State Administration of Foreign Experts Affairs Key Project for Introduction of Foreign Expert (SZ2013003), and the JSPS KAKENHI (Japan) No. 24570014.

References

  1. Aoki S (1977) Colophina clematis (Homoptera, Pemphigidae), an aphid species with “soldiers”. Kontyu 45:276–282Google Scholar
  2. Aponte O, McMurtry JA (1997) Damage on ‘Hass’ avocado leaves, webbing and nest behavior of Oligonychus perseae (Acari: Tetranychidae). Exp Appl Acarol 21:265–272CrossRefGoogle Scholar
  3. Beard J, Walter DE (2010) New spider mite genus (Prostigmata: Tetranychidae) from Australia and New Zealand, with a discussion of Yezonychus. Zootaxa 2578:1–24CrossRefGoogle Scholar
  4. Chae Y, Yokoyama N, Ito K, Fukuda T, Arakawa R, Zhang YX, Saito Y (2015) Reproductive isolation between Stigmaeopsis celarius and its sibling species sympatrically inhabiting bamboo (Pleioblastus spp.) plants. Exp Appl Acarol 66:11–23CrossRefPubMedGoogle Scholar
  5. Chittenden AR (2002) Diversity in the predator-prey interactions of plant-inhabiting mites (Acari: Tetranychidae, Phytoseiidae and Stigmaeiidae). Unpublished PhD Thesis, Hokkaido University.Google Scholar
  6. Crespi BJ (1992) Eusociality in Australian gall thrips. Nature 359:724–726CrossRefGoogle Scholar
  7. Crespi BJ, Choe JC (1997) Introduction. In: Choe JC, Crespi BJ (eds) The evolution of social behavior of insects and arachnids. Cambridge University Press, Cambridge, pp. 1–7CrossRefGoogle Scholar
  8. Crespi BJ, Mound LA (1997) Ecology and evolution of social behavior among Australian gall thrips and their allies. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp. 166–180CrossRefGoogle Scholar
  9. Donzé G, Guerin PM (1994) Behavioral attributes and parental care of Varroa mites parasitizing honeybee brood. Behavl Ecol Sociobiol 34:305–319CrossRefGoogle Scholar
  10. Foster WA, Northcott PA (1994) Galling and the evolution of social behavior in aphids. In: Williams MAJ (ed) Plant galls. Clarendon, Oxford, pp. 161–182Google Scholar
  11. Gupta SK, Gupta YN (1994) A taxonomic review of Indian Tetranychidae (Acari: Prostigmata) with descriptions of new species, re-descriptions of known species and keys to genera and species. Genus 17. Schizotetranychus Trägårdh. Mem Zool Surv India 18:86–99Google Scholar
  12. Ishikawa M, Oda A, Fukami R, Kuriyama A (2015) Factors contributing to deep supercooling capability and cold survival in dwarf bamboo (Sasa senanensis) leaf blades. Front Plant Sci 5:1–9CrossRefGoogle Scholar
  13. Ito K, Yokoyama N, Hayakawa H, Minamiya Y, Yokoyama J, Fukuda T (2011) Molecular phylogenetic relationship of Stigmaeopsis spider mites (Acari: Tetranychidae) collected from Yamagata Prefecture. Bull Yamagata Univ Nat Sci 17:19–29Google Scholar
  14. Kanazawa M, Sahara K, Saito Y (2011) Silk threads function as an 'adhesive cleaner' for nest space in a social spider mite. Proc Royal Soc B 278:1653–1660CrossRefGoogle Scholar
  15. Kikuchi A, Tanaka M (2010) Nest microflora in the social spider mite, Stigmaeopsis longus (Acari: Tetranychidae). In: Sabelis MW, Bruin J (eds) Trends in Acarology: Proceedings of the 12th International Congress. Springer Scientific+Buisiness Media, B.V., pp 313–315Google Scholar
  16. McEnroe WD, Dronka K (1969) Eyes of the two-spotted spider mite. II. Behavioral analysis of the photoreceptors. Ann Entomol Soc Amer 62:466–469CrossRefGoogle Scholar
  17. Michner CD (1969) Comparative social behavior of bees. Annu Rev Entomol 14:299–342CrossRefGoogle Scholar
  18. Mori K (2000) Factors which caused variation in social systems of spider mites, Schizotetranychus celarius species group (Acari: Tetranychidae). Unpublished PhD Thesis, Hokkaido UniversityGoogle Scholar
  19. Mori K, Saito Y (2004) Nest size variation reflecting anti-predator strategies in social spider mites of Stigmaeopsis (Acari: Tetranychidae). Behav Ecol Sociobiol 56:201–206CrossRefGoogle Scholar
  20. Mori K, Saito Y (2005) Variation in social behavior within a spider mite genus, Stigmaeopsis (Acari: Tetranychidae). Behav Ecol 16:232–238CrossRefGoogle Scholar
  21. Mori K, Saito Y (2006) Communal relationships in a social spider mite, Stigmaeopsis longus (Acari: Tetranychidae): an equal share of labor and reproduction between nest mates. Ethology 112:134–142CrossRefGoogle Scholar
  22. Mori K, Saito Y (2013) Genetic basis of woven nest size in subsocial spider mites. Exp Appl Acarol 60:463–469CrossRefPubMedGoogle Scholar
  23. Saito Y (1983) The concept of “life types” in Tetranychinae. An attempt to classify the spinning behavior of Tetranychinae. Acarologia 24:377–391Google Scholar
  24. Saito Y (1985) Life types of spider mites. In: Helle W, Sabelis MW (eds) Spider mites. Their biology, natural enemies and control, Vol. 1A. Elsevier, Amsterdam, pp. 253–264Google Scholar
  25. Saito Y (1986a) Biparental defence in a spider mite (Acari: Tetranychidae) infesting Sasa bamboo. Behav Ecol Sociobiol 18:377–386CrossRefGoogle Scholar
  26. Saito Y (1986b) Prey kills predator: counter-attack success of a spider mite against its specific phytoseiid predator. Exp Appl Acarol 2:47–62CrossRefGoogle Scholar
  27. Saito Y (1990) “Harem” and “non-harem” type mating systems in two species of subsocial spider mites (Acari, Tetranychidae). Res Popul Ecol 32:263–278CrossRefGoogle Scholar
  28. Saito Y (1995) Clinal variation in male-to-male antagonism and weaponry in a subsocial mite. Evolution 49:413–417CrossRefGoogle Scholar
  29. Saito Y (2010) Plant mites and sociality. Behavior and evolution. Springer, TokyoCrossRefGoogle Scholar
  30. Saito Y, Sahara K (1999) Two clinal trends in male-male aggressiveness in a subsocial spider mite. Behav Ecol Sociobiol 46:25–29CrossRefGoogle Scholar
  31. Saito Y, Takahashi K (1982) Study on variation of Schizotetranychus celarius (Banks) II. Comparison of mode of life between two sympatric forms (Acarina: Phytoseiidae). Japan Journal of Ecology 32:69–78Google Scholar
  32. Saito Y, Chittenden AR, Kanazawa M (2011) Counterattack success of a social spider mite against two predominant phytoseiid predator species. Exp Appl Acarol 55:249–258CrossRefPubMedGoogle Scholar
  33. Saito Y, Chittenden AR, Mori K, Ito K, Yamauchi A (2008) An overlooked side effect of nest scattering behavior to decrease predation risk (Acari; Tetranychidae, Stigmaeidae). Behav Ecol Sociobiol 63:33–42CrossRefGoogle Scholar
  34. Saito Y, Kanazawa M, Sato Y (2013) Life history differences between two forms of the social spider mite, Stigmaeopsis miscanthi. Exp Appl Acarol 60:313–320CrossRefPubMedGoogle Scholar
  35. Saito Y, Lin JZ, Zhang YX, Ito K, Liu QY, Chittenden AR (2016) Two new species and four new life types in Tetranychidae. Ann Entomol Soc Amer. doi: 10.1093/aesa/sav158 Google Scholar
  36. Saito Y, Mori K, Sakagami T, Lin JZ (2004) Reinstatement of the genus Stigmaeopsis Banks, with descriptions of two new species (Acari, Tetranychidae). Ann Entomol Soc Am 97:635–646CrossRefGoogle Scholar
  37. Sakagami T, Saito Y, Kongchuensin M, Sahara K (2009) Molecular phylogeny of Stigmaeopsis, with special reference to speciation through host plant shift. Annals of Entomological Society of America 102:360–366CrossRefGoogle Scholar
  38. Sato Y, Saito Y (2006) Nest sanitation in social spider mites: interspecific differences in defecation behavior. Ethology 112:664–669CrossRefGoogle Scholar
  39. Sato Y, Saito Y (2008) Evolutionary view of waste management behavior using volatile chemical cues in social spider mites. J Ethol 26:267–272Google Scholar
  40. Sato Y, Egas M, Sabelis MW, Mochizuki A (2013) Male–male aggression peaks at intermediate relatedness in a social spider mite. Ecology and Evolution 3:2661–2669CrossRefPubMedPubMedCentralGoogle Scholar
  41. Sato Y, Saito Y, Sakagami T (2003) Rules for nest sanitation in a social spider mite, Schizotetranychus miscanthi Saito (Acari: Tetranychidae). Ethology 109:713–724CrossRefGoogle Scholar
  42. Stern DL, Foster WA (1996) The evolution of soldiers in aphids. Bio Rev 71:27–79CrossRefGoogle Scholar
  43. Stern DL, Foster WA (1997) The evolution of sociality in aphids: a clone’s-eye view. In: Choe JC, Crespi BJ (eds) The evolution of social behavior in insects and arachnids. Cambridge University Press, Cambridge, pp. 150–165CrossRefGoogle Scholar
  44. Su J, Zhang FP, Huang WL, Chen DL, Chen SL (2015) Influence of different types of Phyllostachys pubescens (Poales: Poaceae) leaves on population parameters of Pantana phyllostachysae (Lepidoptera: Lymantriidae) and parasitic effects of Beauveria bassiana (Moniliales: Moniliaceae). J Insect Sci 15:1–5CrossRefGoogle Scholar
  45. Wcislo WT, Danforth BN (1997) Secondary solitary: the evolutionary loss of social behavior. Trends in Ecology and Evolution 12:468–474CrossRefPubMedGoogle Scholar
  46. Zhang YX. 2002. Studies on factors causing outbreaks of pest mites in bamboo forests in Fujian, China. Unpublished PhD thesis, Hokkaido University.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Yutaka Saito
    • 1
    • 2
  • Yan-Xuan Zhang
    • 1
  • Kotaro Mori
    • 2
  • Katsura Ito
    • 3
  • Yukie Sato
    • 4
  • Anthony R. Chittenden
    • 5
  • Jian-Zhen Lin
    • 1
  • Younghae Chae
    • 3
  • Takane Sakagami
    • 6
  • Ken Sahara
    • 7
  1. 1.Research Center of Engineer and Technology of Natural Enemy Resource of Crop Pest in Fujian, Institute of Plant ProtectionFujian Academy of Agricultural ScienceFuzhouChina
  2. 2.Research Faculty of AgricultureHokkaido UniversitySapporoJapan
  3. 3.Laboratory of Insect Ecology, Faculty of AgricultureKochi UniversityNankokuJapan
  4. 4.Sugadaira Montane Research CenterUniversity of TsukubaUedaJapan
  5. 5.Office of International Education, Research Faculty of Fisheries SciencesHokkaido UniversityHakodateJapan
  6. 6.Agroscience Research LaboratoriesHokusan Co. LtdKita HiroshimaJapan
  7. 7.Laboratory of Applied Entomology, Faculty of AgricultureIwate UniversityUedaJapan

Personalised recommendations