The Science of Nature

, 103:46 | Cite as

High temperature and temperature variation undermine future disease susceptibility in a population of the invasive garden ant Lasius neglectus

Short Communication


Environmental temperature and temperature variation can have strong effects on the outcome of host-parasite interactions. Whilst such effects have been reported for different host systems, long-term consequences of pre-infection temperatures on host susceptibility and immunity remain understudied. Here, we show that experiencing both a biologically relevant increase in temperature and temperature variation undermines future disease susceptibility of the invasive garden ant Lasius neglectus when challenged with a pathogen under a constant temperature regime. In light of the economic and ecological importance of many social insects, our results emphasise the necessity to take the hosts’ temperature history into account when studying host-parasite interactions under both natural and laboratory conditions, especially in the face of global change.


Ecological immunology Climate change Host-parasite interaction Entomopathogenic fungi Immunity Acclimation 

Supplementary material

114_2016_1373_MOESM1_ESM.docx (176 kb)
ESM 1(DOCX 176 kb)


  1. Adamo SA (2014) The effects of stress hormones on immune function may be vital for the adaptive reconfiguration of the immune system during fight-or-flight behavior. Integr Comp Biol 54:419–426. doi:10.1093/icb/icu005 CrossRefPubMedGoogle Scholar
  2. Adamo SA, Lovett MME (2011) Some like it hot: the effects of climate change on reproduction, immune function and disease resistance in the cricket Gryllus texensis. J Exp Biol 214:1997–2004. doi:10.1242/jeb.056531 CrossRefPubMedGoogle Scholar
  3. Catalán TP, Wozniak A, Niemeyer HM, Kalergis AM, Bozinovic F (2012) Interplay between thermal and immune ecology: effect of environmental temperature on insect immune response and energetic costs after an immune challenge. J Insect Physiol 58:310–317. doi:10.1016/j.jinsphys.2011.10.001 CrossRefPubMedGoogle Scholar
  4. Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social immunity. Curr Biol 17:R693–R702. doi:10.1016/j.cub.2007.06.008 CrossRefPubMedGoogle Scholar
  5. Eggert H, Diddens-de Buhr MF, Kurtz J (2015) A temperature shock can lead to trans-generational immune priming in the Red Flour Beetle, Tribolium castaneum. Ecol Evol 5:1318–1326. doi:10.1002/ece3.1443 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Fischer K, Kolzow N, Holtje H, Karl I (2011) Assay conditions in laboratory experiments: is the use of constant rather than fluctuating temperatures justified when investigating temperature-induced plasticity? Oecologia 166:23–33. doi:10.1007/s00442-011-1917-0 CrossRefPubMedGoogle Scholar
  7. Goulson D, Nicholls E, Botías C, Rotheray EL (2015) Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. Science 347:1255957. doi:10.1126/science.1255957 CrossRefPubMedGoogle Scholar
  8. Krushelnycky PD, Holway DA, LeBrun EG (2009) Invasion processes and causes of success. In: Lach L, Parr CL, Abbott KL (eds) Ant ecology. Oxford University Press, Oxford, UK, pp 245–260CrossRefGoogle Scholar
  9. Lazzaro BP, Little TJ (2009) Immunity in a variable world. Philos Trans R Soc Lond B Biol Sci 364:15–26. doi:10.1098/rstb.2008.0141 CrossRefPubMedGoogle Scholar
  10. Linder JE, Owers KA, Promislow DEL (2008) The effects of temperature on host-pathogen interactions in D. melanogaster: who benefits? J Insect Physiol 54:297–308. doi:10.1016/j.jinsphys.2007.10.001 CrossRefPubMedGoogle Scholar
  11. Murdock CC, Moller-Jacobs LL, Thomas MB (2013) Complex environmental drivers of immunity and resistance in malaria mosquitoes. Proc R Soc Lond B Biol Sci 280:20132030. doi:10.1098/Rspb.2013.2030 CrossRefGoogle Scholar
  12. Otti O, Tragust S, Feldhaar H (2015) Unifying external and internal immune defences. Trends Ecol Evol 29:625–634. doi:10.1016/j.tree.2014.09.002 CrossRefGoogle Scholar
  13. Rey O et al (2012) Where do adaptive shifts occur during invasion? A multidisciplinary approach to unravelling cold adaptation in a tropical ant species invading the Mediterranean area. Ecol Lett 15:1266–1275. doi:10.1111/j.1461-0248.2012.01849.x CrossRefPubMedGoogle Scholar
  14. Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477. doi:10.1146/annurev.ento.50.071803.130404 CrossRefPubMedGoogle Scholar
  15. Roura-Pascual N et al (2011) Relative roles of climatic suitability and anthropogenic influence in determining the pattern of spread in a global invader. Proc Natl Acad Sci U S A 108:220–225. doi:10.1073/pnas.1011723108 CrossRefPubMedGoogle Scholar
  16. Schmid-Hempel P (1998) Parasites in Social Insects. Princeton University Press, Princeton, New JerseyGoogle Scholar
  17. Thomas MB, Blanford S (2003) Thermal biology in insect-parasite interactions. Trends Ecol Evol 18:344–350. doi:10.1016/S0169-5347(03)00069-7 CrossRefGoogle Scholar
  18. Triggs A, Knell RJ (2012) Interactions between environmental variables determine immunity in the Indian meal moth Plodia interpunctella. J Anim Ecol 81:386–394. doi:10.1111/j.1365-2656.2011.01920.x CrossRefPubMedGoogle Scholar
  19. Walther G-R et al (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693. doi:10.1016/j.tree.2009.06.008 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Tobias Pamminger
    • 1
  • Thomas Steier
    • 2
  • Simon Tragust
    • 2
  1. 1.University of Sussex, School of Life SciencesBrightonUK
  2. 2.Animal Ecology IUniversity of BayreuthBayreuthGermany

Personalised recommendations