The Science of Nature

, 103:25 | Cite as

Gut bacterial communities across tadpole ecomorphs in two diverse tropical anuran faunas

  • Miguel VencesEmail author
  • Mariana L. Lyra
  • Jordan G. Kueneman
  • Molly C. Bletz
  • Holly M. Archer
  • Julia Canitz
  • Svenja Handreck
  • Roger-Daniel Randrianiaina
  • Ulrich Struck
  • Sabin Bhuju
  • Michael Jarek
  • Robert Geffers
  • Valerie J. McKenzie
  • Christoph C. Tebbe
  • Célio F. B. Haddad
  • Julian Glos
Original Paper


Animal-associated microbial communities can play major roles in the physiology, development, ecology, and evolution of their hosts, but the study of their diversity has yet focused on a limited number of host species. In this study, we used high-throughput sequencing of partial sequences of the bacterial 16S rRNA gene to assess the diversity of the gut-inhabiting bacterial communities of 212 specimens of tropical anuran amphibians from Brazil and Madagascar. The core gut-associated bacterial communities among tadpoles from two different continents strongly overlapped, with eight highly represented operational taxonomic units (OTUs) in common. In contrast, the core communities of adults and tadpoles from Brazil were less similar with only one shared OTU. This suggests a community turnover at metamorphosis. Bacterial diversity was higher in tadpoles compared to adults. Distinct differences in composition and diversity occurred among gut bacterial communities of conspecific tadpoles from different water bodies and after experimental fasting for 8 days, demonstrating the influence of both environmental factors and food on the community structure. Communities from syntopic tadpoles clustered by host species both in Madagascar and Brazil, and the Malagasy tadpoles also had species-specific isotope signatures. We recommend future studies to analyze the turnover of anuran gut bacterial communities at metamorphosis, compare the tadpole core communities with those of other aquatic organisms, and assess the possible function of the gut microbiota as a reservoir for protective bacteria on the amphibian skin.


Amphibia Anura Tadpoles Gut microbiota 16S rRNA Stable isotopes 



Work in Madagascar was made possible by a collaboration accord between the Université d’Antananarivo (Département de Biologie Animale), the Ministère de l’Environnement, des Eaux et Forêts of the Republic of Madagascar, and the Technische Universität Braunschweig. We are grateful to the Malagasy authorities for research and export permits. We are deeply indebted to Otto Larink (TU Braunschweig) for his kind help with identifying the tadpole food items. Meike Kondermann was of invaluable help with lab work. Work in Madagascar was supported by the Volkswagen Foundation to MV, JG, and RDR; by grants of the Deutsche Forschungsgemeinschaft to MV (VE247/2-1 and VE247/9-1) and JG (GL 665/1-1); and by fellowships of the Deutscher Akademischer Austauschdienst to MB and RDR. Maria J. O. Campos and Marcelo de Carvalho authorized our entry into the work area in Itapé, Rio Claro, SP, Brazil. Work in Brazil was supported by a visiting researcher grant of CAPES to MV, CFBH, and ML (88881.062205/2014-01). CFBH thanks grant #2013/50741-7, São Paulo Research Foundation (FAPESP) and CNPq, for a research fellowship. Experiments were approved by the Ethics Committee of UNESP Rio Claro (permit no. 36/2015).

Supplementary material

114_2016_1348_MOESM1_ESM.pdf (1.2 mb)
ESM 1 (PDF 1207 kb)


  1. Altig R, Johnston GF (1989) Guilds of anuran larvae: relationships among developmental modes, morphologies, and habitats. Herpetol Monogr 3:81–109CrossRefGoogle Scholar
  2. Altig R, McDiarmid RW (1999) Body plan: development and morphology. In: McDiarmid RW, Altig R (eds) Tadpoles. The biology of anuran larvae. The University of Chicago Press, Chicago, pp 24–51Google Scholar
  3. Altig R, McDiarmid RW (2006) Descriptions and biological notes on three unusual mantellid tadpoles (Amphibia: Anura: Mantellidae) from southeastern Madagascar. Proc Biol Soc Wash 119:418–425CrossRefGoogle Scholar
  4. Altig R, Whiles MR, Taylor CL (2007) What do tadpoles really eat? Assessing the trophic status of an understudied and imperiled group of consumers in freshwater habitats. Freshw Biol 52:386–395CrossRefGoogle Scholar
  5. Antwis RE, Haworth RL, Engelmoer DJ, Ogilvy V, Fidgett AL, Preziosi RF (2014) Ex situ diet influences the bacterial community associated with the skin of red-eyed tree frogs (Agalychnis callidryas). PLoS One 9, e85563CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aronesty E (2011) ea–utils: Command–line tools for processing biological sequencing data.–utils. Accessed 1 Oct 2015
  7. Aronesty E (2013) TOBioiJ: comparison of sequencing utility programs. Open Bioinforma J 7:1–8CrossRefGoogle Scholar
  8. Arribas R, Díaz-Paniagua C, Caut S, Gomez-Mestre I (2015) Stable isotopes reveal trophic partitioning and trophic plasticity of a larval amphibian guild. PLoS One 10, e0130897CrossRefPubMedPubMedCentralGoogle Scholar
  9. Arumugam M, Raes J, Pelletier E et al (2011) Enterotypes of the human gut microbiome. Nature 473:174–180CrossRefPubMedPubMedCentralGoogle Scholar
  10. Becker MH, Harris RN (2010) Cutaneous bacteria of the redback salamander prevent morbidity associated with a lethal disease. PLoS One 5, e10957CrossRefPubMedPubMedCentralGoogle Scholar
  11. Becker MH, Brucker RM, Schwantes CR, Harris RN, Minibiole KPC (2009) The bacterially produced metabolite Violacein is associated with survival of amphibians infected with a lethal fungus. Appl Environ Microbiol 75(21):6635–6638CrossRefPubMedPubMedCentralGoogle Scholar
  12. Belden LK, Hughey MC, Rebollar EA, Umile TP, Loftus SC, Burzynski EA, Minbiole KP, House LL, Jensen RV, Becker MH, Walke JB, Medina D, Ibáñez R, Harris RN (2015) Panamanian frog species host unique skin bacterial communities. Front Microbiol 6:1171CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bjorndal KA (1997) Fermentation in reptiles and amphibians. In: Mackie RI, White BA (eds) Gastrointestinal microbiology: volume 1, gastrointestinal ecosystems and fermentations. Chapman and Hall, New York, pp 199–230CrossRefGoogle Scholar
  14. Bjorndal KA, Pryor GS (2005) Effects of the nematode Gyrinicola batrachiensis on development, gut morphology, and fermentation in bullfrog tadpoles (Rana catesbeiana): a novel mutualism. J Exp Zool Part A 303:704–712Google Scholar
  15. Bletz MC, Loudon AH, Becker MH, Bell SC, Woodhams DC, Minbiole KP, Harris RN (2013) Mitigating amphibian chytridiomycosis with bioaugmentation: characteristics of effective probiotics and strategies for their selection and use. Ecol Lett 16:807–820CrossRefPubMedGoogle Scholar
  16. Bloom S, Ledon-Rettig C, Infante C, Everly A, Hanken J, Nascone-Yoder N (2013) Developmental origins of a novel gut morphology in frogs. Evol Dev 15:213–223CrossRefPubMedGoogle Scholar
  17. Bokulich NA, Subramanian S, Faith JJ, Gevers D, Gordon JI, Knight R, Mills DA, Caporaso JG (2013) Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods 10(1):57–59CrossRefPubMedPubMedCentralGoogle Scholar
  18. Bolnick DI, Snowberg LK, Hirsch PE, Lauber CL, Knight R, Caporaso JG, Svanbäck R (2014) Individuals’ diet diversity influences gut microbial diversity in two freshwater fish (threespine stickleback and Eurasian perch). Ecol Lett 17:979–987CrossRefPubMedPubMedCentralGoogle Scholar
  19. Brosius J, Dull TJ, Sleeter DD, Noller HF (1981) Gene organization and primary structure of a ribosomal RNA operon from Escherichia coli. J Mol Biol 148:107–127CrossRefPubMedGoogle Scholar
  20. Brucker RM, Harris RN, Schwantes CR, Gallaher TN, Flaherty DC, Lam BA, Minbiole KPC (2008) Amphibian chemical defense: antifungal metabolites of the microsymbiont Janthinobacterium lividum on the salamander Plethodon cinereus. J Chem Ecol 34:1422–1429CrossRefPubMedGoogle Scholar
  21. Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  22. Colman DR, Toolson EC, Takacs-Vesbach CD (2012) Do diet and taxonomy influence insect gut bacterial communities? Mol Ecol 21:5124–5137CrossRefPubMedGoogle Scholar
  23. Colombo BM, Scalvenzi T, Benlamara S, Pollet N (2015) Microbiota and mucosal immunity in amphibians. Front Immunol 6:111CrossRefPubMedPubMedCentralGoogle Scholar
  24. Delsuc F, Metcalf JL, Wegener Parfrey L, Song SJ, González A, Knight R (2014) Convergence of gut microbiomes in myrmecophagous mammals. Mol Ecol 23:1301–1317CrossRefPubMedGoogle Scholar
  25. DeNiro MJ, Epstein S (1981) Influence of diet on the distribution of nitrogen isotopes in animals. Geochim Cosmochim Acta 45:341–351CrossRefGoogle Scholar
  26. Derrien M, van Hylckama Vlieg JET (2015) Fate, activity, and impact of ingested bacteria within the human gut microbiota. Trends Microbiol 23:354–366CrossRefPubMedGoogle Scholar
  27. Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  28. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200CrossRefPubMedPubMedCentralGoogle Scholar
  29. Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735CrossRefPubMedGoogle Scholar
  30. Fox H (1984) Amphibian morphogenesis. Humana, New YorkCrossRefGoogle Scholar
  31. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359CrossRefPubMedPubMedCentralGoogle Scholar
  32. Grosjean S, Strauß A, Glos J, Randrianiaina R-D, Ohler A, Vences M (2011a) Morphological and ecological uniformity in the funnel-mouthed tadpoles of Malagasy litter frogs, subgenus Chonomantis. Zool J Linnean Soc 162:149–183CrossRefGoogle Scholar
  33. Grosjean S, Randrianiaina R-D, Strauß A, Vences M (2011b) Sand-eating tadpoles in Madagascar: morphology and ecology of the unique larvae of the treefrog Boophis picturatus. Salamandra 47:63–76Google Scholar
  34. Harris RN, James TY, Lauer A, Simon MA, Patel A (2006) Amphibian pathogen Batrachochytrium dendrobatidis is inhibited by the cutaneous bacteria of amphibian species. EcoHealth 3:53–56CrossRefGoogle Scholar
  35. Harris RN, Brucker RM, Walke JB et al (2009) Skin microbes on frogs prevent morbidity and mortality caused by a lethal skin fungus. ISME J 3:818–824CrossRefPubMedGoogle Scholar
  36. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G (2010) Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature 464:908–912CrossRefPubMedGoogle Scholar
  37. Inger RF (1986) Diets of tadpoles living in a Borneo rain forest. Alytes 5:153–164Google Scholar
  38. Jani AJ, Briggs CJ (2014) The pathogen Batrachochytrium dendrobatidis disturbs the frog skin microbiome during a natural epidemic and experimental infection. Proc Natl Acad Sci U S A 111:E5049–5058CrossRefPubMedPubMedCentralGoogle Scholar
  39. Kohl KD, Cary TL, Karasov WH, Dearing MD (2013) Restructuring of the amphibian gut microbiota through metamorphosis. Environ Microbiol Rep 5:899–903CrossRefPubMedGoogle Scholar
  40. Kohl KD, Amaya J, Passement CA, Dearing MD, McCue MD (2014a) Unique and shared responses of the gut microbiota to prolonged fasting: a comparative study across five classes of vertebrate hosts. FEMS Microbiol Ecol 90:883–894CrossRefPubMedGoogle Scholar
  41. Kohl KD, Skopec MM, Dearing MD (2014b) Captivity results in disparate loss of gut microbial diversity in closely related hosts. Conserv Phys 2:cou009CrossRefGoogle Scholar
  42. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kueneman JG, Wegener Parfrey L, Woodhams DC, Archer HM, Knight R, McKenzie VJ (2014) The amphibian skin-associated microbiome across species, space and life history stages. Mol Ecol 23:1238–1250CrossRefPubMedGoogle Scholar
  44. Kueneman JG, Woodhams DC, Van Treuren W, Archer HM, Knight R, McKenzie VJ (2016) Inhibitory bacteria reduce fungi on early life stages of endangered Colorado boreal toads (Anaxyrus boreas). ISME J. doi: 10.1038/ismej.2015.168 PubMedGoogle Scholar
  45. Lauer A, Simon MA, Banning JL, Andre E, Duncan K, Harris RN (2007) Common cutaneous bacteria from the eastern red-backed salamander can inhibit pathogenic fungi. Copeia 3:630–640CrossRefGoogle Scholar
  46. Lauer A, Simon MA, Banning JL, Lam BA, Harris RN (2008) Diversity of cutaneous bacteria with antifungal activity isolated from female four-toed salamanders. ISME J 2:145–157CrossRefPubMedGoogle Scholar
  47. Layman CA, Quattrochi JP, Peyer CM, Allgeier JE (2007a) Niche width collapse in a resilient top predator following ecosystem fragmentation. Ecol Lett 10:937–944CrossRefPubMedPubMedCentralGoogle Scholar
  48. Layman CA, Arrington DA, Montana CG, Post DM (2007b) Can stable isotope ratios provide for community-wide measures of trophic structure? Ecology 88:42–48CrossRefPubMedGoogle Scholar
  49. Ley RE, Hamady M, Lozupone C, Turnbaugh PJ, Ramey RR, Bircher JS, Schlegel ML, Tucker TA, Schrenzel MD, Knight R, Gordon JI (2008a) Evolution of mammals and their gut microbes. Science 320:1647–1651CrossRefPubMedPubMedCentralGoogle Scholar
  50. Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008b) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat Rev Microbiol 6:776–788CrossRefPubMedPubMedCentralGoogle Scholar
  51. Loudon AH, Woodhams DC, Parfrey LW, Archer H, Knight R, McKenzie V, Harris RN (2014) Microbial community dynamics and effect of environmental microbial reservoirs on red-backed salamanders (Plethodon cinereus). ISME J 8:830–840CrossRefPubMedPubMedCentralGoogle Scholar
  52. Lozupone C, Knight R (2005) UniFrac: a new phylogenetic method for comparing microbial communities. Appl Environ Microbiol 71:8228–8235CrossRefPubMedPubMedCentralGoogle Scholar
  53. McFall-Ngai M, Hadfield MG, Bosch TC et al (2013) Animals in a bacterial world, a new imperative for the life sciences. Proc Natl Acad Sci U S A 110:3229–3236CrossRefPubMedPubMedCentralGoogle Scholar
  54. McKenzie VJ, Bowers RM, Fierer N, Knight R, Lauber CL (2012) Co-habiting amphibian species harbor unique skin bacterial communities in wild populations. ISME J 6:588–596CrossRefPubMedPubMedCentralGoogle Scholar
  55. Oliveros JC (2015) Venny. An interactive tool for comparing lists with Venn’s diagrams. Accessed 1 Oct 2015
  56. Palm NW, de Zoete MR, Flavell RA (2015) Immune-microbiota interactions in health and disease. Clin Immunol 159(2):122–127CrossRefPubMedGoogle Scholar
  57. Peterson BJ, Fry B (1987) Stable isotopes in ecosystem studies. Annu Rev Ecol Syst 18:293–320CrossRefGoogle Scholar
  58. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83:703–718CrossRefGoogle Scholar
  59. Price MN, Dehal PS, Arkin AP (2010) FastTree 2—approximately maximum-likelihood trees for large alignments. PLoS One 5, e9490CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pryor GS (2008) Anaerobic bacteria isolated from the gastrointestinal tracts of bullfrog tadpoles (Rana catesbeiana). Herpetol Conserv Biol 3:176–181Google Scholar
  61. Pryor GS (2014) Tadpole nutritional ecology and digestive physiology: implications for captive rearing of larval anurans. Zool Biol 33:502–507CrossRefGoogle Scholar
  62. Qiu X, Wu L, Huang H, McDonel PE, Palumbo AV, Tiedje JM, Zhou J (2001) Evaluation of PCR-generated chimeras, mutations, and heteroduplexes with 16S rRNA gene-based cloning. Appl Environ Microbiol 67(2):880–887CrossRefPubMedPubMedCentralGoogle Scholar
  63. Rossa-Ferres DC, Jim J, Fonseca MG (2004) Diets of tadpoles from a temporary pond in southeastern Brazil (Amphibia, Anura). Rev Bras Zool 21:745–754CrossRefGoogle Scholar
  64. Schiesari L, Werner EE, Kling GW (2009) Carnivory and resource-based niche differentiation in anuran larvae: implications for food web and experimental ecology. Freshw Biol 54:572–586CrossRefGoogle Scholar
  65. Schmidt H, Strauß A, Reeve E, Letz A, Ludewig AK, Neb D, Pluschzick R, Randrianiaina RD, Reckwell D, Schröder S, Wesolowski A, Vences M (2008) Descriptions of the remarkable tadpoles of three treefrog species, genus Boophis, from Madagascar. Herpetol Notes 1:49–57Google Scholar
  66. Segata N, Izard J, Walron L, Gevers D, Miropolsky L, Garrett W, Huttenhower C (2011) Metagenomic biomarker discovery and explanation. Genome Biol 12:R60. doi: 10.1186/gb-2011-12-6-r60 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Strauß A, Reeve E, Randrianiaina RD, Vences M, Glos J (2010) The world’s richest tadpole communities show functional redundancy and low functional diversity: ecological data on Madagascar’s stream-dwelling amphibian larvae. BMC Ecol 10:12. doi: 10.1186/1472-6785-10-12 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Strauß A, Randrianiaina RD, Vences M, Glos J (2013) Species distribution and assembly patterns of frog larvae in rainforest streams of Madagascar. Hydrobiol 702:27–43CrossRefGoogle Scholar
  69. Toloza EM, Diamond JM (1990) Ontogenetic development of nutrient transporters in bullfrog intestine. Am J Physiol 258:G760–769PubMedGoogle Scholar
  70. Tuddenham S, Sears CL (2015) The intestinal microbiome and health. Curr Opin Infect Dis 28(5):464–470CrossRefPubMedGoogle Scholar
  71. Vences M, Gehara M, Köhler J, Glaw F (2012) Description of a new Malagasy treefrog (Boophis) occurring syntopically with its sister species, and a plea for studies on non-allopatric speciation in tropical amphibians. Amphibia-Reptilia 33:503–520CrossRefGoogle Scholar
  72. Verburg P, Kilham SS, Pringle CM, Lips KR, Drake DL (2007) A stable isotope study of a neotropical stream food web prior to the extirpation of its large amphibian community. J Trop Ecol 23:643–653CrossRefGoogle Scholar
  73. Viertel B, Richter S (1999) Anatomy: viscera and endocrines. In: McDiarmid RW, Altig R (eds) Tadpoles: the biology of anuran larvae. University of Chicago Press, Chicago, pp 92–148Google Scholar
  74. Vlčková K, Mrázek J, Kopečný J, Petrželková KJ (2012) Evaluation of different storage methods to characterize the fecal bacterial communities of captive western lowland gorillas (Gorilla gorilla gorilla). J Microbiol Methods 91:45–51CrossRefPubMedGoogle Scholar
  75. Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  76. Whiles MR, Lips KR, Pringle CM et al (2006) The effects of amphibian population declines on the structure and function of Neotropical stream ecosystems. Front Ecol Environ 4:27–34CrossRefGoogle Scholar
  77. Wiggins PJ, Smith JM, Harris RN, Minbiole KPC (2011) Gut of red-backed salamanders (Plethodon cinereus) may serve as a reservoir for an antifungal cutaneous bacterium. J Herpetol 45:329–332CrossRefGoogle Scholar
  78. Woodhams DC, Vredenburg VT, Simon M, Billheimer D, Shakhtour B, Shyr Y, Briggs CJ, Rollins-Smith LA, Harris RN (2007) Symbiotic bacteria contribute to innate immune defenses of the threatened mountain yellow-legged frog, Rana muscosa. Biol Conserv 138:390–398CrossRefGoogle Scholar
  79. Woodhams DC, Bosch J, Briggs CJ et al (2011) Mitigating amphibian disease: strategies to maintain wild populations and control chytridiomycosis. Front Zool 8:8CrossRefPubMedPubMedCentralGoogle Scholar
  80. Zina J, Ennser J, Pinheiro SCP, Haddad CFB, Toledo LF (2007) Taxocenose de anuros de uma mata semidecídua do interior do Estado de São Paulo e comparações com outras taxocenoses do Estado, sudeste do Brasil. Biota Neotropical 7:1–9Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Miguel Vences
    • 1
    Email author
  • Mariana L. Lyra
    • 2
  • Jordan G. Kueneman
    • 3
  • Molly C. Bletz
    • 1
  • Holly M. Archer
    • 3
  • Julia Canitz
    • 1
    • 4
  • Svenja Handreck
    • 1
    • 5
  • Roger-Daniel Randrianiaina
    • 6
  • Ulrich Struck
    • 7
  • Sabin Bhuju
    • 8
  • Michael Jarek
    • 8
  • Robert Geffers
    • 8
  • Valerie J. McKenzie
    • 3
  • Christoph C. Tebbe
    • 9
  • Célio F. B. Haddad
    • 2
  • Julian Glos
    • 10
  1. 1.Zoological InstituteTechnische Universität BraunschweigBraunschweigGermany
  2. 2.Departamento de Zoologia, Instituto de BiociênciasUNESP - Univ Estadual PaulistaRio ClaroBrazil
  3. 3.Department of Ecology and Evolutionary BiologyUniversity of ColoradoBoulderUSA
  4. 4.Evolutionary Biology and Special Zoology, Institute for Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
  5. 5.Visualization GroupOtto-von-Guericke UniversityMagdeburgGermany
  6. 6.Département de Biologie AnimaleUniversité d’AntananarivoAntananarivoMadagascar
  7. 7.Museum für NaturkundeLeibniz-Institut für Evolutions- und BiodiversitätsforschungBerlinGermany
  8. 8.Department of Genome AnalyticsHelmholtz Centre for Infection ResearchBraunschweigGermany
  9. 9.Thünen Institute of BiodiversityBraunschweigGermany
  10. 10.Department of Animal Ecology and ConservationUniversity of HamburgHamburgGermany

Personalised recommendations