The Science of Nature

, 103:19 | Cite as

The first Mesozoic microwhip scorpion (Palpigradi): a new genus and species in mid-Cretaceous amber from Myanmar

  • Michael S. EngelEmail author
  • Laura C. V. Breitkreuz
  • Chenyang Cai
  • Mabel Alvarado
  • Dany Azar
  • Diying HuangEmail author
Original Paper


A fossil palpigrade is described and figured from mid-Cretaceous (Cenomanian) amber from northern Myanmar. Electrokoenenia yaksha Engel and Huang, gen. n. et sp. n., is the first Mesozoic fossil of its order and the only one known as an inclusion in amber, the only other fossil being a series of individuals encased in Pliocene onyx marble and 94–97 million years younger than E. yaksha. The genus is distinguished from other members of the order but is remarkably consistent in observable morphological details when compared to extant relatives, likely reflecting a consistent microhabitat and biological preferences over the last 100 million years.


Burmese amber Cenomanian Chelicerata Mesozoic Palpigradi Taxonomy 



H.D.-Y. was supported through the National Basic Research Program of China (2012CB821903) and the National Natural Science Foundation of China (41222013), while that of D.A. was through the collaborative project, “Biodiversity: Origin, Structure, Evolution and Geology” granted by the Lebanese University. L.C.V.B. was partially supported by the U.S. National Science Foundation grant (DEB-1144162, to M.S.E.), and M.A. through a doctoral fellowship from the Fondo para la Innovación, Ciencia y Tecnología, Peru. We are immensely grateful to three anonymous reviewers for their helpful comments on an earlier version of the manuscript. This is a contribution of the Division of Entomology, University of Kansas Natural History Museum.


  1. Beccaloni J (2009) Arachnids. CSIRO Publishing, CollingwoodGoogle Scholar
  2. Carpenter FM (1992) Superclass Hexapoda. In: Moore RC, Kaesler RL (eds) Treatise on Invertebrate Paleontology, R, Arthropoda 4 [Volumes 3–4]. University of Kansas Press, Lawrence, pp. i–xxii + 1–655Google Scholar
  3. Chatzimanolis S, Newton AF, Soriano C, Engel MS (2013) Remarkable stasis in a phloeocharine rove beetle from the Late Cretaceous of New Jersey (Coleoptera, Staphylinidae). J Paleontol 87(2):177–182CrossRefGoogle Scholar
  4. Cognato AI, Grimaldi DA (2008) 100 million years of morphological conservatism in a bark beetle (Coleoptera: Curculionidae; Scolytinae). Syst Entomol 34(1):1–8Google Scholar
  5. Condé B (1965) Présence de Palpigrades dans le milieu interstitiel littoral. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sci Paris 261(12):1898–1900Google Scholar
  6. Condé B (1996) Les Palpigrades, 1885–1995: Acquisitions et lacunes. Revue Suisse de Zoologie, hors série, 87–106Google Scholar
  7. Crowson RA, Rolfe WDI, Smart J, Waterston C, Willey EC, Wooton RJ (1967) Arthropoda: Chelicerata, Pycnogonida, Paleoisopus, Myriapoda and Insecta. In: Harland WB, Holland CH, House MR, Hughes NF, Reynolds AB, Rudwick MJS, Satterthwaite GE, Tarlo LBH, Willey EC (eds) The fossil record. Geological Society of London, London, pp 499–534Google Scholar
  8. Delclòs X, Nel A, Azar D, Bechly G, Dunlop JA, Engel MS, Heads SW (2008) The enigmatic Mesozoic insect taxon Chresmodidae (Polyneoptera): new palaeobiological and phylogenetic data, with the description of a new species from the Lower Cretaceous of Brazil. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen 247(3):353–381CrossRefGoogle Scholar
  9. Dunlop JA (2010) Geological history and phylogeny of Chelicerata. Arthropod Structure Dev 39(2–3):124–142CrossRefGoogle Scholar
  10. Engel MS, Grimaldi DA (2002) The first Mesozoic Zoraptera (Insecta). Am Mus Novit 3362:1–20CrossRefGoogle Scholar
  11. Engel MS, Grimaldi DA (2014) Whipspiders (Arachnida: Amblypygi) in amber from the Early Eocene and mid-Cretaceous, including maternal care. Novitates Paleoentomologicae 9:1–17Google Scholar
  12. Garwood RJ, Dunlop JA (2014) Three-dimensional reconstruction and the phylogeny of extinct chelicerate orders. Peer J 2:e641. doi: 10.7717/peerj.641 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Germar EF (1839) Die versteinertern Insekten Solenhofens. Nova Acta Leopoldina Carolina Akademia Halle 19(1):187–222Google Scholar
  14. Giribet G, McIntyre E, Christian E, Espinasa L, Ferreira RL, Francke ÓF, Harvey MS, Isaia M, Kovác Ĺ, McCutchen L, Souza MFVR, Zagmajster M (2014) The first phylogenetic analysis of Palpigradi (Arachnida)—the most enigmatic arthropod order. Invertebr Syst 28(4):350–360Google Scholar
  15. Grassi GB (1886) I progenitori dei Miriapodi e degli Insetti memoria V. Intorno ad un nuovo aracnide artrogastro (Koenenia mirabilis) rappresentante di un nuovo ordine (Microthelyphonida). Bollettino della Società Entomologica Italiana Firenze 18:153–172Google Scholar
  16. Grassi GB, Calandruccio S (1885) Intorno ad un nuovo aracnide artrogastro (Koenenia mirabilis), che crediamo rappresentante d’un nuovo ordine (Microteliphonida). Naturalista Siciliano 4(127–133):162–168Google Scholar
  17. Grimaldi D, Engel MS (2007) Why descriptive science still matters. Bioscience 57(8):646–647CrossRefGoogle Scholar
  18. Grimaldi DA, Engel MS, Nascimbene PC (2002) Fossiliferous Cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. Am Mus Novit 3361:1–72CrossRefGoogle Scholar
  19. Haase E (1890a) Bemerkungen zur Paläontologie der Insecten. Neues Jahrbuch für Mineralogie Geologie und Palaeontologie 1890(2):1–33Google Scholar
  20. Haase E (1890b) Beiträge zur Kenntnis der fossilen Arachniden. Z Dtsch Geol Ges 42:629–657Google Scholar
  21. Hamilton WD (1978) Evolution and diversity under bark. In: Mound LA, Waloff N (eds) Diversity of insect faunas. Blackwell Scientific, Oxford, pp 154–175Google Scholar
  22. Handlirsch A (1906) Die fossilen Insekten und die Phylogenie der rezenten Formen: Ein Handbuch für Paläontologen und Zoologen. Engelmann, LeipzigGoogle Scholar
  23. Harvey MS (2003) Catalogue of the smaller arachnid orders of the world: Amblypygi, Uropygi, Schizomida, Palpigradi, Ricinulei and Solifugae. CSIRO Publishing, CollingwoodGoogle Scholar
  24. Norton RA, Bonamo PM, Grierson JD, Shear WA (1988) Oribatid mite fossils from a terrestrial Devonian deposit near Gilboa, New York. J Paleontol 62(2):259–269Google Scholar
  25. Petrunkevitch AI (1949) A study of Palaeozoic Arachnida. Trans Connect Acad Arts Sci 37:69–315Google Scholar
  26. Petrunkevitch AI (1955) Arachnida. In: Moore RC (ed) Treatise on invertebrate paleontology, Part P, Arthropoda 2. University of Kansas Press, Lawrence, pp 42–162Google Scholar
  27. Peyerimhoff P (1902) Découverter en France du genre Kaenenia [sic] (Arachn. Palpigradi). Bulletin de la Société Entomologique de France 1902:280–283Google Scholar
  28. Prendini L (2011) Order Palpigradi Thorell, 1888. Zootaxa 3148:121Google Scholar
  29. Rowland JM, Sissom WD (1980) Report on a fossil palpigrade from the Tertiary of Arizona, and a review of the morphology and systematics of the order (Arachnida: Palpigradida). J Arachnol 8(1):69–86Google Scholar
  30. Rudkin DM, Young GA, Nowlan GS (2008) The oldest horseshoe crab: a new xiphosurid from Late Ordovician Konservat-Lagerstätten deposits, Manitoba, Canada. Palaeontology 51(1):1–9CrossRefGoogle Scholar
  31. Savory TH (1971) Evolution in the Arachnida. Merrow Monographs, WatfordGoogle Scholar
  32. Savory T (1974) On the arachnid order Palpigradi. J Arachnol 2(1):43–45Google Scholar
  33. Shi G, Grimaldi DA, Harlow GE, Wang J, Wang J, Yang M, Lei W, Li Q, Li X (2012) Age constraint on Burmese amber based on U-Pb dating of zircons. Cretac Res 37:155–163CrossRefGoogle Scholar
  34. Sidorchuk EA, Schmidt AR, Ragazzi E, Roghi G, Lindquist EE (2015) Plant-feeding mite diversity in Triassic amber (Acari: Tetrapodili). J Syst Palaeontol 13(2):129–151CrossRefGoogle Scholar
  35. Simpson GG (1953) The major features of evolution. Columbia University Press, New YorkGoogle Scholar
  36. Smrž J, Kováč L, Mikeš J, Lukešová A (2013) Microwhip scorpions (Palpigradi) feed on heterotrophic cyanobacteria in Slovak caves—a curiosity among Arachnida. PLoS One 8(10):e75989. doi: 10.1371/journal.pone.0075989 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Souza MFVR, Ferreira RL (2013) Two new species of the enigmatic Leptokoenenia (Eukoeneniidae: Palpigradi) from Brazil: first record of the genus outside intertidal environments. PLoS One 8(11):e77840. doi: 10.1371/journal.pone.0077840 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Thorell T (1888) Pedipalpi e Scorpioni dell’ Archipelago malese conservati nel Museo Civico di Storia Naturale di Genova. Annali del Museo Civico di Storia Naturale di Genova, Serie 2 [vol 6] 26: 327–428Google Scholar
  39. van der Hammen L (1982) Comparative studies in Chelicerata II. Epimerata (Palpigradi and Actinotrichida). Zoologische Verhandelingen 196:1–70Google Scholar
  40. Walter D, Proctor H (1999) Mites: ecology, evolution and behaviour. CABI Publishing, WallingfordGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Michael S. Engel
    • 1
    • 2
    Email author
  • Laura C. V. Breitkreuz
    • 1
  • Chenyang Cai
    • 3
  • Mabel Alvarado
    • 1
  • Dany Azar
    • 4
  • Diying Huang
    • 3
    Email author
  1. 1.Division of Entomology, Natural History Museum, Department of Ecology and Evolutionary BiologyUniversity of KansasLawrenceUSA
  2. 2.Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA
  3. 3.State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and PalaeontologyChinese Academy of SciencesNanjingPeople’s Republic of China
  4. 4.Faculty of Sciences II, Department of BiologyLebanese UniversityFanar MatnLebanon

Personalised recommendations