The Science of Nature

, 103:15 | Cite as

Extraordinary range expansion in a common bat: the potential roles of climate change and urbanisation

  • L. Ancillotto
  • L. Santini
  • N. Ranc
  • L. Maiorano
  • D. RussoEmail author
Original Paper


Urbanisation and climate change are two global change processes that affect animal distributions, posing critical threats to biodiversity. Due to its versatile ecology and synurbic habits, Kuhl’s pipistrelle (Pipistrellus kuhlii) offers a unique opportunity to explore the relative effects of climate change and urbanisation on species distributions. In a climate change scenario, this typically Mediterranean species is expected to expand its range in response to increasing temperatures. We collected 25,132 high-resolution occurrence records from P. kuhlii European range between 1980 and 2013 and modelled the species’ distribution with a multi-temporal approach, using three bioclimatic variables and one proxy of urbanisation. Temperature in the coldest quarter of the year was the most important factor predicting the presence of P. kuhlii and showed an increasing trend in the study period; mean annual precipitation and precipitation seasonality were also relevant, but to a lower extent. Although urbanisation increased in recently colonised areas, it had little effect on the species’ presence predictability. P. kuhlii expanded its geographical range by about 394 % in the last four decades, a process that can be interpreted as a response to climate change.


Chiroptera Distribution Global change Pipistrelle Model 



We thank the researchers, professionals, NGO representatives or simple participants who helped us to gather all the data necessary to this study. Special thanks go to the French Society for Mammal Study and Protection (SFEPM), the contributing bat local groups (Groupes Chiroptères) of Aquitaine (GCA), Auvergne (Chauve-Souris Auvergne), Corse (GCC), Champagne Ardennes, Ile de France, Languedoc-Rousillon (GCLR), Midi-Pyrénées (CEN-GMCP), Pays de la Loire, Poitou-Charentes, Provence (GCP) and Rhône Alpes as well as the local mammal groups of Alsace (GEPMA), Bretagne (GMB), Limousin (GMHL), Nord (CMNF) and Normandie (GMN). We would also like to thank the LPO and its local groups Anjou and Vendée, as well as the CPIE Loire Anjou and CPIE Vallées de la Sarthe et du Loir, CREN Poitou-Charentes, Faune-Charente-Maritime, Les Naturalistes Vendéens, Mayenne Nature Environnement, Nature Environnement 17 and Picardie Nature. We also received important contributions from the Natural History Museum of Bourges, the French National Forest Office (ONF) and ECO-MED (environmental consultancy), BatLife Österreich (Austria), the Bat Research and Conservation Centre at the National Museum of Natural History, Sofia (Bulgaria), Tel-Aviv University (Israel), RE.NA.TO (Tuscany, Italy), Centro Recupero Fauna Selvatica di Roma (LIPU), the Instituto da Conservação da Natureza e das Florestas (Portugal), the Bat Conservation Switzerland and the Centro protezione chirotteri Ticino (Switzerland). Finally, we would like to thank J.T. Alcalde, B. Allegrini, O. Allenou, E. Amichai, S. Aulagnier, S. Bareille, V. Barret, P. Barros, P. Benda, Y. Bernard, J. Boireau, L. Braz, A. Casadio, G. Caublot, H. Chauvin, G. Coste, JY Courtois, P. Georgiakakis, L. Girard, N. Harter, J. Jemin, P. Jourde, JF. Julien, B. Karapandza, H. Kraettli, M. Lemaire, M. Leuchtmann, S. Lutz, M. Manni Joss, K. Marchesi, M. Mattei-Roesli, S. Meiri, B. Même-Lafond, E. Mori, E. Papadatou, M. Paunovic, R. Pavisse, B. Petrov, P. Presetnik, D. Quekenborn, L. Rodrigues, F. Spitzenberger, G. Testud, P. Théou, M. Thévenot, L. Tillon, S. Vincent A. Vlaschenko and Y. Yovel for their help. N. Ranc was supported by GBIF and Swarovski Optik. We also thank three anonymous reviewers who greatly improved a previous version of this manuscript.

Compliance with ethical standards

Conflict of interests

The authors declare that they have no competing interests.

Supplementary material

114_2016_1334_MOESM1_ESM.doc (1.6 mb)
ESM 1 (DOC 1645 kb)


  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  2. Ancillotto L, Allegrini C, Serangeli MT, Jones G, Russo D (2015) Sociality across species: spatial proximity of newborn bats promotes heterospecific social bonding. Behav Ecol 26:293–299CrossRefGoogle Scholar
  3. Ancillotto L, Russo D (2015) Reassessing the breeding range limits for two long-distance migratory vespertilionid bats, Pipistrellus nathusii and Nyctalus leisleri in the Italian Peninsula. Mammalia 79:245–248Google Scholar
  4. Antrop M (2004) Landscape change and the urbanisation process in Europe. Landsc Urban Plan 67:9–26CrossRefGoogle Scholar
  5. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47CrossRefPubMedGoogle Scholar
  6. Arlettaz R, Godat S, Meyer H (2000) Competition for food by expanding pipistrelle bat populations (Pipistrellus pipistrellus) might contribute to the decline of lesser horseshoe bats (Rhinolophus hipposideros). Biol Conserv 93:55–60CrossRefGoogle Scholar
  7. Arnfield AJ (2003) Two decades of urban climate research: a review of turbulence, exchanges of energy and water, and the urban heat island. Int J Climatol 23:1–26CrossRefGoogle Scholar
  8. Baker PJ, Harris S (2007) Urban mammals: what does the future hold? An analysis of the factors affecting patterns of use of residential gardens in Great Britain. Mamm Rev 37:297–315Google Scholar
  9. Barak Y, Yom-Tov Y (1989) The advantages of group hunting in Kuhl’s bat Pipistrellus kuhlii (Microchiroptera). J Zool 219:670–675CrossRefGoogle Scholar
  10. Barbet‐Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338CrossRefGoogle Scholar
  11. Bat Conservation Trust (2010) Rarities and vagrants.
  12. Benda P, Ivanova T, Horáček I, Hanák V, Červený J, Gaisler J, Gueorguieva A, Petrov B, Vohralík V (2003) Bats (Mammalia: Chiroptera) of the Eastern Mediterranean. Part 3. Review of bat distribution in Bulgaria. Acta Soc Zool Bohem 67:245–357Google Scholar
  13. Bennie J, Davies T, Duffy JP, Inger R, Gaston KJ (2014) Contrasting trends in light pollution across Europe based on satellite observed night time lights. Sci Rep 4:3789CrossRefPubMedPubMedCentralGoogle Scholar
  14. Berková H, Pokorný M, Zukal J (2014) Selection of buildings as maternity roosts by greater mouse-eared bats (Myotis myotis). J Mammal 95:1011–1017CrossRefGoogle Scholar
  15. Bradley CA, Altizer S (2007) Urbanisation and the ecology of wildlife diseases. Trends Ecol Evol 22:95–102CrossRefPubMedGoogle Scholar
  16. Cel’uch M, Ševčík M (2006) First record of Pipistrellus kuhlii (Chiroptera) from Slovakia. Biologia 61:637–638Google Scholar
  17. Chace JF, Walsh JJ (2006) Urban effects on native avifauna: a review. Landsc Urban Plan 74:46–69CrossRefGoogle Scholar
  18. Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333:1024–1026CrossRefPubMedGoogle Scholar
  19. Danko Š (2007) Reprodukcia Hypsugo savii a Pipistrellus kuhlii na východnom Slovensku: ďalšie dôkazy o ich šírení na sever. Vespertilio 11:13–14Google Scholar
  20. Di Salvo I, Russo D, Sarà M (2009) Habitat preferences of bats in a rural area of Sicily determined by acoustic surveys. Hystrix 20:137–146Google Scholar
  21. Dietz C, von Helversen O, Nill D (2009) Bats of Britain, Europe and Northwest Africa. A & C Black, LondonGoogle Scholar
  22. Dragu A, Munteanu I, Olteanu V (2007) First record of Pipistrellus kuhlii Kuhl, 1817 (Chiroptera: Vespertilionidae) from Dobrogea (Romania). Arch Biol Sci 59:243–247CrossRefGoogle Scholar
  23. Elith J, Kearney M, Phillips S (2010) The art of modelling range‐shifting species. Methods Ecol Evol 1:330–342CrossRefGoogle Scholar
  24. Fehèr CE (1995) A fehrszlü denev.r (Pipistrellus kuhli) els. adatai [First data of Kuhl’s pipistrelle (Pipistrellus kuhli) from Hungary]. Denevrkutats (Hungarian Bat Research News) 1:16–17Google Scholar
  25. Frick WF, Reynolds DS, Kunz TH (2010) Influence of climate and reproductive timing on demography of little brown myotis Myotis lucifugus. J Anim Ecol 79:128–136CrossRefPubMedGoogle Scholar
  26. Goiti U, Vecin P, Garin I, Salona M, Aihartza JR (2003) Diet and prey selection in Kuhl’s pipistrelle Pipistrellus kuhlii (Chiroptera: Vespertilionidae) in south-western Europe. Acta Theriol 48:457–468CrossRefGoogle Scholar
  27. Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A, Kujala H, Lentini PE, Wintle BA (2015) Is my species distribution model fit for purpose? Matching data and models to applications. Glob Ecol Biogeog 24:276–292CrossRefGoogle Scholar
  28. Hersteinsson P, Macdonald DW (1992) Interspecific competition and the geographical distribution of red and arctic foxes Vulpes vulpes and Alopex lagopus. Oikos 64:505–515CrossRefGoogle Scholar
  29. Ifrim I, Valenciuc N (2006) Pipistrellus kuhlii Kuhl, 1819, a new reported species for the chiropteran fauna of Moldavia (Romania). Travaux du Muséum National d’Histoire Naturelle ‘Grigore Antipa 49:359–363Google Scholar
  30. IUCN (2012) IUCN red list categories and criteria: version 3.1., 2nd edn. IUCN, Gland, Switzerland and Cambridge, Available: Google Scholar
  31. Ivanova TJ, Popov VV (1994) First record of Pipistrellus kuhlii (Kuhl, 1819) (Vespertilionidae, Chiroptera, Mammalia) from Bulgaria. Acta Zool Bulg 47:79–81Google Scholar
  32. Jetz W, Wilcove DS, Dobson AP (2007) Projected impacts of climate and land-use change on the global diversity of birds. PLoS Biology 5:e157CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kedrov BM, Seshurak PN (1999) The first record of the Pipistrellus kuhlii (Chiroptera, Vespertilionidae) in Chernihiv oblast (Ukraine). Vestnik zoologii 33:66Google Scholar
  34. Kunz TH (1982) Roosting ecology of bats. In: Kunz TH (ed) Ecology of bats. Plenum Publishing Corporation, USA, pp 1–55CrossRefGoogle Scholar
  35. Leger F (1992) Sur la présence de la Pipistrelle de Kuhl, Pipistrellus kuhli (Kuhl 1819), en Eure-et-Loir, loir-et-Cher et Sarthe. Bulletin scientifique de la Societè des amis du msèum de Chartres et des Naturalistes d’Eure-et-Loir 11:2–5Google Scholar
  36. Lundy M, Montgomery I, Russ J (2010) Climate change-linked range expansion of Nathusius’ pipistrelle bat, Pipistrellus nathusii (Keyserling & Blasius, 1839). J Biogeog 37:2232–2242CrossRefGoogle Scholar
  37. Maiorano L, Cheddadi R, Zimmermann NE, Pellissier L, Petitpierre B, Pottier J, Laborde H, Hurdu BI, Pearman PB, Psomas A, Singarayer JS, Broennimann O, Vittoz P, Dubuis A, Edwards ME, Binney HA, Guisan A (2013) Building the niche through time: using 13,000 years of data to predict the effects of climate change on three tree species in Europe. Global Ecol Biogeogr 22:302–317CrossRefGoogle Scholar
  38. Maiorano L, Falcucci A, Zimmermann NE, Psomas A, Pottier J, Baisero D, Boitani L (2011) The future of terrestrial mammals in the Mediterranean basin under climate change. Philos Trans R Soc B 366:2681–2692CrossRefGoogle Scholar
  39. Martinoli A, Preatoni DG, Tosi G (2000) Does Nathusius’ pipistrelle Pipistrellus nathusii (Keyserling & Blasius, 1839) breed in northern Italy? J Zool 250:217–220CrossRefGoogle Scholar
  40. McKinney ML, Lockwood JL (1999) Biotic homogenization: a few winners replacing many losers in the next mass extinction. Trends Ecol Evol 14:450–453CrossRefPubMedGoogle Scholar
  41. Moritz C, Patton JL, Conroy CJ, Parra JL, White GC, Beissinger SR (2008) Impact of a century of climate change on small-mammal communities in Yosemite National Park, USA. Science 322:261–264CrossRefPubMedGoogle Scholar
  42. Palang H, Printsmann A, Gyuró ÉK, Urbanc M, Skowronek E, Woloszyn W (2006) The forgotten rural landscapes of central and eastern Europe. Landsc Ecol 21:347–357CrossRefGoogle Scholar
  43. Patterson ME, Montag JM, Williams DR (2003) The urbanisation of wildlife management: social science, conflict and decision making. Urban For Urban Greening 1:171–183CrossRefGoogle Scholar
  44. Paunović M, Marinković S (1998) Kuhl’s pipistrelle Pipistrellus kuhlii Kuhl, 1817 (Chiroptera, Vespertilionidae)—a new species in the mammal fauna of Serbia, with data on its Balkan distribution range, status and ecology. Proceedings of the fauna of Serbia, Natural and Mathematical Sciences 5:167–180Google Scholar
  45. Perugini M, Manera M, Grotta L, Abete MC, Tarasco R, Amorena M (2011) Heavy metal (Hg, Cr, Cd, and Pb) contamination in urban areas and wildlife reserves: honeybees as bioindicators. Biological Trace Element Research 140:170–176CrossRefPubMedGoogle Scholar
  46. Popczyk B, Lesiński G, Baumann A, Wojtowicz B (2008) Kuhl’s pipistrelle, Pipistrellus kuhlii (Kuhl, 1817) or Pipistrellus lepidus Blyth, 1845, in Central Poland—accidental record or a result of expansion? Nyctalus 13:279–281Google Scholar
  47. Razgour O, Juste J, Ibáñez C, Kiefer A, Rebelo H, Puechmaille SJ, Arlettaz R, Burke T, Dawson DA, Beaumont M, Jones G (2013) The shaping of genetic variation in edge-of-range populations under past and future climate change. Ecol Lett 16:1258–1266CrossRefPubMedPubMedCentralGoogle Scholar
  48. Rebelo H, Tarroso P, Jones G (2010) Predicted impact of climate change on European bats in relation to their biogeographic patterns. Global Change Biology 16:561–576CrossRefGoogle Scholar
  49. Reiter A, Benda P, Hotovy J (2007) First record of the Kuhl’s pipistrelle, Pipistrellus kuhlii (Kuhl, 1817), in the Czech Republic. Lynx 38:47–54Google Scholar
  50. Rowe RJ, Finarelli JA, Rickart EA (2010) Range dynamics of small mammals along an elevational gradient over an 80‐year interval. Glob Chang Biol 16:2930–2943Google Scholar
  51. Russo D, Ancillotto L (2015) Sensitivity of bats to urbanisation: a review. Mamm Biol 80:205–212Google Scholar
  52. Russo D, Jones G (1998) The social calls of Kuhl’s pipistrelles Pipistrellus kuhlii (Kuhl, 1819): structure and variation (Chiroptera: Vespertilionidae). J Zool 249:476–481CrossRefGoogle Scholar
  53. Russo D, Jones G (2003) Use of foraging habitats by bats in a Mediterranean area determined by acoustic surveys: conservation implications. Ecography 26:197–209CrossRefGoogle Scholar
  54. Russo D, Cistrone L, Jones G (2012) Sensory ecology of water detection by bats: a field experiment. PLoS ONE 7(10): e48144. doi: 10.1371/journal.pone.0048144
  55. Rydell J (1992) Exploitation of insects around streetlamps by bats in Sweden. Funct Ecol 6:744–750CrossRefGoogle Scholar
  56. Sachanowicz K, Wower A, Bashta AT (2006) Further range extension of Pipistrellus kuhlii (Kuhl, 1817) in central and eastern Europe. Acta Chiropterol 8:543–548CrossRefGoogle Scholar
  57. Serangeli MT, Cistrone L, Ancillotto L, Tomassini A, Russo D (2012) The post-release fate of hand-reared orphaned bats: survival and habitat. Anim Welf 21:9–18CrossRefGoogle Scholar
  58. Sherwin HA, Montgomery WI, Lundy MG (2013) The impact and implications of climate change for bats. Mamm Rev 43:171–182CrossRefGoogle Scholar
  59. Shoo LP, Williams SE, Hero J (2006) Detecting climate change induced range shifts: where and how should we be looking? Austral Ecol 31:22–29CrossRefGoogle Scholar
  60. Stawski C, Willis CKR, Geiser F (2014) The importance of temporal heterothermy in bats. J Zool 292:86–100CrossRefGoogle Scholar
  61. Stebbings RE, Griffith F (1986) Distribution and status of bats in Europe. Institute of Terrestrial Ecology, Abbots Ripton, HuntingdonGoogle Scholar
  62. Steffen W, Grinevald J, Crutzen P, McNeill J (2011) The Anthropocene: conceptual and historical perspectives. Philos Trans R Soc A 369:842–867CrossRefGoogle Scholar
  63. Stone EL, Jones G, Harris S (2009) Street lighting disturbs commuting bats. Curr Biol 19:1123–1127CrossRefPubMedGoogle Scholar
  64. Thomas CD, Cameron ARG et al (2004) Extinction risk from climate change. Nature 427:145–148CrossRefPubMedGoogle Scholar
  65. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  66. Tomassini A, Colangelo P, Agnelli P, Jones G, \ D (2014) Cranial size has increased over 133 years in a common bat, Pipistrellus kuhlii: a response to changing climate or urbanisation? J Biogeog 41:944–953CrossRefGoogle Scholar
  67. Tuttle MD (1976) Population ecology of the gray bat (Myotis grisescens): factors influencing growth and survival of newly volant young. Ecology 57:587–595CrossRefGoogle Scholar
  68. Van der Meij T, Van Strien AJ, Haysom KA, Dekker J, Russ J, Biala K, Vintulis V (2015) Return of the bats? A prototype indicator of trends in European bat populations in underground hibernacula. Mamm Biol 80:170–177Google Scholar
  69. Van Dyck H (2012) Changing organisms in rapidly changing anthropogenic landscapes: the significance of the “Umwelt”—concept and functional habitat for animal conservation. Evol Appl 5:144–153CrossRefPubMedPubMedCentralGoogle Scholar
  70. Visconti P, Baisero D, Brooks T, Butchart SHM, Joppa L, Alkemade R, Bakkenes M, Di Marco M, Santini L, Hoffmann M, Maiorano L, Pressey RL, Arponen A, Boitani L, Reside A, van Vuuren D, Rondinini C (2015) Projecting global biodiversity indicators under future development scenarios. Conserv Lett (in press) doi: 10.1111/conl.12159

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • L. Ancillotto
    • 1
  • L. Santini
    • 2
  • N. Ranc
    • 3
    • 4
  • L. Maiorano
    • 2
  • D. Russo
    • 1
    • 5
    Email author
  1. 1.Wildlife Research Unit, Laboratorio di Ecologia Applicata, Sezione di Biologia e Protezione dei Sistemi Agrari e Forestali, Dipartimento di AgrariaUniversità degli Studi di Napoli Federico IIPorticiItaly
  2. 2.Dipartimento di Biologia e Biotecnologie “Charles Darwin”Università degli Studi di Roma La SapienzaRomeItaly
  3. 3.Organismic and Evolutionary Biology DepartmentHarvard UniversityCambridgeUSA
  4. 4.Centro Ricerca ed InnovazioneFondazione Edmund MachTrentoItaly
  5. 5.School of Biological SciencesUniversity of BristolBristolUK

Personalised recommendations