The Science of Nature

, 103:9 | Cite as

Unrelated secondary reproductives in the neotropical termite Silvestritermes euamignathus (Isoptera: Termitidae)

  • Ives Haifig
  • Edward L. Vargo
  • Paul Labadie
  • Ana Maria Costa-Leonardo
Original Paper

Abstract

A termite colony is usually founded by a pair of alates, the primary reproductives, which produce all the nestmates. In some species, secondary reproductives appear to either replace the primaries or supplement colony reproduction. In termites, secondary reproductives are generally ergatoids derived from workers or nymphoids derived from nymphs. Silvestritermes euamignathus is a termite species that forms multiple nymphoid reproductives, and to date it was hypothesized that these secondary reproductives were the progeny of the primary founding reproductives. We developed markers for 12 microsatellite loci and used COI mitochondrial DNA (mtDNA) to genotype 59 nymphoid neotenics found in a colony of S. euamignathus to test this hypothesis. Our results showed that nymphoids of S. euamignathus are not all siblings. The microsatellite analysis suggests that the secondary reproductives derived from a minimum of four different pairs of reproductives belonging to at least two different matrilines. This is the first record of non-sibling secondary reproductives occupying the same nest in a higher termite. These unrelated reproductives might be the result of either pleometrotic colony foundation or colony fusion.

Keywords

Microsatellites mtDNA COI Genotyping Neotenics 

References

  1. Araujo RL (1958) Contribuição à biogeografia dos térmitas de São Paulo, Brasil (Insecta, Isoptera). Arq Inst Biol 25:185–217Google Scholar
  2. Atkinson L, Adams ES (1997) The origins and relatedness of multiple reproductives in colonies of the termite Nasutitermes corniger. Proc R Soc Lond B 264:1131–1136CrossRefGoogle Scholar
  3. Barbosa JRC, Moura FMS, Bandeira AG, Vasconcellos A (2012) Caste differentiation pathways in the neotropical termite Armitermes holmgreni (Isoptera: Termitidae). Zool Sci 29:738–742CrossRefPubMedGoogle Scholar
  4. Coles-de-Negret HR, Redford K (1982) The biology of nine termite species (Isoptera: Termitidae) from the cerrado of Central Brazil. Psyche 89(1-2):81–106CrossRefGoogle Scholar
  5. Costa-Leonardo AM, Barsotti RC, Soares HX (1996) Multiple nymphoid reproductives in the nests of the neotropical termite, Armitermes euamignathus (Isoptera, Termitidae, Nasutitermitinae). Sociobiology 28(2):197–205Google Scholar
  6. Costa-Leonardo AM, Soares HX, Barsotti RC (1998) Response to orphaning in two neotropical termites: Armitermes euamignathus and Embiratermes festivellus. Entomol Exp Appl 88:109–114CrossRefGoogle Scholar
  7. Costa-Leonardo AM, Barsotti RC, Soares HX (1999) Morphology of the nymphoid replacement reproductives in the neotropical termite Armitermes euamignathus (Isoptera, Termitidae, Nasutitermitinae). J Morphol 239(2):131–141CrossRefGoogle Scholar
  8. DeHeer CJ, Vargo EL (2004) Colony genetic organization and colony fusion in the termite Reticulitermes flavipes as revealed by foraging patterns over time and space. Mol Ecol 13:431–441CrossRefPubMedGoogle Scholar
  9. DeHeer CJ, Vargo EL (2008) Strong mitochondrial DNA similarity but low relatedness at microsatellite loci among families within fused colonies of the termite Reticulitermes flavipes. Insect Soc 55:190–199CrossRefGoogle Scholar
  10. Fougeyrollas R, Dolejšová K, Sillam-Dussès D, Roy V, Poteaux C, Hanus R, Roisin Y (2015) Asexual queen succession in the higher termite Embiratermes neotenicus. Proc R Soc Lond B 282:20150260CrossRefGoogle Scholar
  11. Goudet J (2002) FSTAT, a program to estimate and test gene diversities and fixation indicesGoogle Scholar
  12. Guaraldo AC, Costa-Leonardo AM (2009) Preliminary fusion testing between whole young colonies of Coptotermes gestroi (Isoptera: Rhinotermitidae). Sociobiology 53:767–774Google Scholar
  13. Hacker M, Kaib M, Bagine RKN, Epplen JT, Brandl R (2005) Unrelated queens coexist in colonies of the termite Macrotermes michaelseni. Mol Ecol 14:1527–1532CrossRefPubMedGoogle Scholar
  14. Hartke TR, Baer B (2011) The mating biology of termites: a comparative review. Anim Behav 82(5):927–936CrossRefGoogle Scholar
  15. Hartke TR, Rosengaus RB (2013) Costs of pleometrosis in a polygamous termite. Proc R Soc Lond B Biol Sci 280:20122563Google Scholar
  16. Koressaar T, Remm M (2007) Enhancements and modifications of primer design program Primer3. Bioinformatics 23(10):1289–91CrossRefPubMedGoogle Scholar
  17. Luchetti A, Dedeine F, Velonà A, Mantovani B (2013) Extreme genetic mixing within colonies of the wood-dwelling termite Kalotermes flavicollis (Isoptera, Kalotermitidae). Mol Ecol 22:3391–3402CrossRefPubMedGoogle Scholar
  18. Mathews AG (1977) Studies on termites from the Mato Grosso state, Brazil. Academia Brasileira de Ciências, Rio de Janeiro, p 267Google Scholar
  19. Matsuura K, Nishida T (2001) Colony fusion in a termite: what makes the society “open”? Insect Soc 48:378–383CrossRefGoogle Scholar
  20. Matsuura K, Vargo EL, Kawatsu K, Labadie PE, Nakano H, Yashiro T, Tsuji K (2009) Queen succession through asexual reproduction in termites. Science 323:1687CrossRefPubMedGoogle Scholar
  21. Miller LR (1969) Caste differentiation in the lower termites. In: Biology of Termites. Krishna K, Weesner FM (eds) pp. 283-310Google Scholar
  22. Myles TG (1999) Review of secondary reproduction in termites (Insecta: Isoptera) with comments on its role in termite ecology and social evolution. Sociobiology 33:1–91Google Scholar
  23. Noirot C (1956) Les sexués de remplacement chez les termites supérieurs (Termitidae). Insect Soc 3:145–148CrossRefGoogle Scholar
  24. Noirot C (1969) Formation of castes in higher termites. In: Biology of Termites. Krishna K, Weesner FM (eds) pp. 311-350Google Scholar
  25. Rocha MM, Cancello EM, Carrijo TF (2012) Neotropical termites: revision of Armitermes Wasmann (Isoptera, Termitidae, Syntermitinae) and phylogeny of the Syntermitinae. Syst Entomol 37:793–827CrossRefGoogle Scholar
  26. Roisin Y, Pasteels JM (1985) Imaginal polymorphism and polygyny in the Neo-Guinean termite Nasutitermes princeps (Desneux). Insect Soc 32:140–157CrossRefGoogle Scholar
  27. Roisin Y, Pasteels JM (1986a) Replacement of reproductives in Nasutitermes princeps (Desneux) (Isoptera: Termitidae). Behav Ecol Sociobiol 18:437–442CrossRefGoogle Scholar
  28. Roisin Y, Pasteels JM (1986b) Differentiation of worker-derived intercastes and precocious imagoes after queen removal in the Neo-Guinean termite Nasutitermes princeps (Desneux). J Morphol 189:281–293CrossRefGoogle Scholar
  29. Thorne BL (1982) Polygyny in termites: multiple primary queens in colonies of Nasutitermes corniger (Motschulsky) (Isoptera: Termitidae). Insect Soc 29:102–117CrossRefGoogle Scholar
  30. Thorne BL (1984) Polygyny in the neotropical termite Nasutitermes corniger: life history consequences of queen mutualism. Behav Ecol Sociobiol 14:117–136CrossRefGoogle Scholar
  31. Thorne BL, Breisch NL, Muscedere ML (2003) Evolution of eusociality and the soldier caste in termites: influence of intraspecific competition and accelerated inheritance. Proc Natl Acad Sci 100(22):12808–12813PubMedCentralCrossRefPubMedGoogle Scholar
  32. Untergrasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, Rozen SG (2012) Primer3—new capabilities and interfaces. Nucleic Acids Res 40(15):e115CrossRefGoogle Scholar
  33. Vargo EL, Husseneder C (2011) Genetic structure of termite colonies and populations. In: Biology of Termites: a modern synthesis. Bignell DE, Roisin Y, Lo N (eds) pp. 321-347Google Scholar
  34. Vargo EL, Labadie PE (2012) Matsuura K (2012) Asexual queen succession in the subterranean termite Reticulitermes virginicus. Proc R Soc B Biol Sci 279(1729):813–819CrossRefGoogle Scholar
  35. Wu J, Su X, Kong X, Liu M, Xing L (2013) Multiple male and female reproductive strategies and the presence of a polyandric mating system in the termite Reticulitermes labralis (Isoptera: Rhinotermitidae). Sociobiology 60(4):459–465CrossRefGoogle Scholar
  36. Ye C, Ma ZS, Cannon CH, Pop M, Yu DW (2012) Exploiting sparseness in de novo genome assembly. BMC Bioinformatics 13(Suppl 6):S1PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Ives Haifig
    • 1
    • 2
    • 3
  • Edward L. Vargo
    • 3
    • 4
  • Paul Labadie
    • 3
  • Ana Maria Costa-Leonardo
    • 1
  1. 1.Laboratório de Cupins, Departamento de Biologia, Instituto de BiociênciasUniv Estadual Paulista–UNESPRio ClaroBrazil
  2. 2.Current address: Instituto de Ciências AgráriasUniversidade Federal de Uberlândia–UFUMonte CarmeloBrazil
  3. 3.Department of EntomologyNorth Carolina State University–NCSURaleighUSA
  4. 4.Current address: Department of Entomology, 2143 TAMUTexas A&M UniversityCollege StationUSA

Personalised recommendations