Advertisement

The Science of Nature

, 102:17 | Cite as

Effect of density on traffic and velocity on trunk trails of Formica pratensis

  • C. HönickeEmail author
  • P. Bliss
  • R. F. A. Moritz
Original Paper

Abstract

The allocation of large numbers of workers facilitates the swift intake of locally available resources which is essential for ant colony survival. To organise the traffic between nest and food source, the black-meadow ant Formica pratensis establishes permanent trunk trails, which are maintained by the ants. To unravel the ant organisation and potential traffic rules on these trails, we analysed velocity and lane segregation under various densities by experimentally changing feeding regimes. Even under the highest ant densities achieved, we never observed any traffic jams. On the contrary, velocity increased after supplementary feeding despite an enhanced density. Furthermore, inbound ants returning to the nest had a higher velocity than those leaving the colony. Whilst at low and medium density the ants used the centre of the trail, they used the full width of the trail at high density. Outbound ants also showed some degree of lane segregation which contributes to traffic organisation.

Keywords

Density Trunk trail Traffic Lateralization Formica pratensis 

References

  1. Alexander C, Silverstein M, Angel S, Ishikawa S, Abrams D (1975) The Oregon experiment. Center for Environmental Structure Series, vol 3. Oxford University Press, New YorkGoogle Scholar
  2. Ashby WR (1947) Principles of the self-organizing dynamic system. J Gen Psychol 37:125–128CrossRefPubMedGoogle Scholar
  3. Bennett AF (1990) Thermal-dependence of locomotor capacity. Am J Physiol 259:R253–R258PubMedGoogle Scholar
  4. Burd M, Archer D, Aranwela N, Stradling DJ (2002) Traffic dynamics of the leaf-cutting ant, Atta cephalotes. Am Nat 159:283–293CrossRefPubMedGoogle Scholar
  5. Camazine S, Deneubourg J-L, Franks N, Sneyd J, Theraulaz G, Bonabeau E (2001) Self-organization in biological systems. Princeton University Press, PrincetonGoogle Scholar
  6. Camlitepe Y, Aksoy V, Uren N, Yilmaz A, Becenen I (2005) An experimental analysis on the magnetic field sensitivity of the black-meadow ant Formica pratensis Retzius (Hymenoptera: Formicidae). Acta Biol Hung 56:215–224CrossRefPubMedGoogle Scholar
  7. Chowdhury D, Santen L, Schadschneider A (2000) Statistical physics of vehicular traffic and some related systems. Phys Rep 329:199–329CrossRefGoogle Scholar
  8. Cosens D, Toussaint N (1985) An experimental study of the foraging strategy of the wood ant Formica aquilonia. Anim Behav 33:541–552CrossRefGoogle Scholar
  9. Couzin ID, Franks NR (2002) Self-organized lane formation and optimized traffic flow in army ants. Proc R Soc Lond B 270:139–146CrossRefGoogle Scholar
  10. Dallmeyer J, Schumann R, Lattner AD, Timm IJ (2012) Don’t go with the ant flow: ant-inspired traffic routing in urban environments. Proc. 7th International Workshop on Agents in Traffic and Transportation (ATT 2012), Valencia, pp 59–68Google Scholar
  11. Dorigo M, Blum C (2005) Ant colony optimization theory: a survey. Theor Comp Sci 344:243–278CrossRefGoogle Scholar
  12. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, García Marquéz JR, Gruber B, Lafourcade B, Leitão PJ, Münkemüller T, McClean C, Osborne PE, Reineking B, Schröder B, Skidmore AK, Zurell D, Lautenbach S (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46CrossRefGoogle Scholar
  13. Dussutour A, Fourcassié V, Helbing D, Deneubourg J-L (2004) Optimal traffic organization in ants under crowded conditions. Nature 428:70–73CrossRefPubMedGoogle Scholar
  14. Dussutour A, Deneubourg J-L, Fourcassié V (2005) Temporal organization of bi-directional traffic in the ant Lasius niger (L.). J Exp Biol 208:2903–2912CrossRefPubMedGoogle Scholar
  15. Dussutour A, Beshers S, Deneubourg J-L, Fourcassié V (2007) Crowding increases foraging efficiency in the leaf-cutting ant Atta colombica. Insectes Soc 54:158–165CrossRefGoogle Scholar
  16. Dussutour A, Beshers S, Deneubourg J-L, Fourcassié V (2009) Priority rules govern the organization of traffic on foraging trails under crowding conditions in the leaf-cutting ant Atta colombica. J Exp Biol 212:499–505CrossRefPubMedGoogle Scholar
  17. Fourcassié V, Dussutour A, Deneubourg J-L (2010) Ant traffic rules. J Exp Biol 213:2357–2363CrossRefPubMedGoogle Scholar
  18. Frasnelli E (2013) Brain and behavioral lateralization in invertebrates. Front Psychol 4:Article 939: 1–10Google Scholar
  19. Frasnelli E, Iakovlev I, Reznikova Z (2012) Asymmetry in antennal contacts during trophallaxis in ants. Behav Brain Res 232:7–12CrossRefPubMedGoogle Scholar
  20. Gordon DM, Paul RE, Thorpe K (1993) What is the function of encounter patterns in ant colonies? Anim Behav 45:1083–1100CrossRefGoogle Scholar
  21. Gösswald K (1989) Die Waldameisen, vol 1. Aula Verlag, WiesbadenGoogle Scholar
  22. Gotwald WHJ (1995) Army ants: the biology of social predation. Cornell University Press, IthacaGoogle Scholar
  23. Guisan A, Zimmermann NE (2000) Predictive habitat distribution models in ecology. Ecol Model 135:147–186CrossRefGoogle Scholar
  24. Helbing D (2001) Traffic and related self-driven many-particle systems. Rev Mod Phys 73:1067–1141CrossRefGoogle Scholar
  25. Heuts BA, Cornelissen P, Lambrechts DYM (2003) Different attack modes of Formica species in interspecific one-on-one combats with other ants (Hymenoptera: Formicidae). Ann Zool (Wars) 53:205–216Google Scholar
  26. Hölldobler B, Wilson EO (1990) The ants. Belknap Press of Harvard University Press, CambridgeCrossRefGoogle Scholar
  27. Holt SJ (1955) On the foraging activity of the wood ant. J Anim Ecol 24:1–34CrossRefGoogle Scholar
  28. Hunt ER, O´Shea-Weller T, Albery GF, Bridger TH, Gumn M, Franks NR (2014) Ants show a leftward turning bias when exlporing unknown nest sites. Biol Lett 10:20140945Google Scholar
  29. John A, Schadschneider A, Chowdhury D, Nishinari K (2009) Trafficlike collective movement of ants on trails: absence of jammed phase. Phys Rev Lett 102:108001CrossRefPubMedGoogle Scholar
  30. Kerner BS (2004) The physics of traffic. Springer, BerlinCrossRefGoogle Scholar
  31. Lamb AE, Ollason JG (1994) Trail-laying and recruitment to sugary foods by foraging red wood-ants Formica aquilonia Yarrow (Hymenoptera: Formicidae). Behav Process 31:111–124CrossRefGoogle Scholar
  32. Litman T (2014) Smart congestion relief. Comprehensive evaluation of traffic congestion costs and congestion reduction strategies. Victoria Transport Policy Institute, VictoriaGoogle Scholar
  33. Mailleux A-C, Detrain C, Deneubourg J-L (2005) Triggering and persistence of trail-laying in foragers of the ant Lasius niger. J Insect Physiol 51:297–304CrossRefPubMedGoogle Scholar
  34. Miura T, Matsumoto T (1998a) Foraging organization of the open-air processional lichen-feeding termite Hospitalitermes (Isoptera, Termitidae) in Borneo. Insectes Soc 45:17–32CrossRefGoogle Scholar
  35. Miura T, Matsumoto T (1998b) Open-air litter foraging in the nasute termite Longipeditermes longipes (Isoptera: Termitidae). J Insect Behav 11:179–189CrossRefGoogle Scholar
  36. Perna A, Latty T (2014) Animal transportation networks. J R Soc Interface 11:20140334CrossRefPubMedCentralPubMedGoogle Scholar
  37. Quinet Y, Pasteels JM (1991) Spatiotemporal evolution of the trail network in Lasius fuliginosus (Hymenoptera, Formicidae). Belgian J Zool 121:55–72Google Scholar
  38. Quinet Y, Pasteels JM (1996) Spatial specialization of the foragers and foraging strategy in Lasius fuliginosus (Latreille) (Hymenoptera, Formicidae). Insectes Soc 43:333–346CrossRefGoogle Scholar
  39. Quinet Y, de Biseau JC, Pasteels JM (1997) Food recruitment as a component of the trunk-trail foraging behaviour of Lasius fuliginosus (Hymenoptera: Formicidae). Behav Process 40:75–83CrossRefGoogle Scholar
  40. Roces F, Núñez JA (1993) Information about food quality influences load-size selection in recruited leaf-cutting ants. Anim Behav 45:135–143CrossRefGoogle Scholar
  41. Rosengren R (1971) Route fidelity, visual memory and recruitment behaviour in foraging wood ants of the genus Formica (Hymenoptera, Formicidae). Acta Zoolog Fenn 133:1–106Google Scholar
  42. Rosengren R (1977) Foraging strategy of wood ants (Formica rufa group). I. Age polyethism and topographic traditions. Acta Zoolog Fenn 149:1–30Google Scholar
  43. Seifert B (2007) Die Ameisen Mittel- und Nordeuropas. Lutra, TauerGoogle Scholar
  44. Treiber M, Kesting A (2010) Verkehrsdynamik und –simulation. Springer, BerlinCrossRefGoogle Scholar
  45. Von dem Bussche J, Spaar R, Schmid H, Schröder B (2008) Modelling the recent and potential future spatial distribution of the Ring Ouzel (Turdus torquatus) and Blackbird (T. merula) in Switzerland. J Ornithol 149:529–544CrossRefGoogle Scholar
  46. Wilson EO (1971) Social insects. Science 172:406–408CrossRefPubMedGoogle Scholar
  47. Wirth R, Herz H, Ryel RJ, Beyschlag W, Hölldobler B (2003) Herbivory of leaf-cutting ants—a case study on Atta colombica in the tropical rainforest of Panama. Springer, BerlinCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Leibnitz Centre for Agricultural Landscape Research (ZALF) e.V.Müncheberg (Mark)Germany
  2. 2.Department of Molecular Ecology, Institute of BiologyMartin-Luther-Universität Halle-WittenbergHalle (Saale)Germany
  3. 3.Department of Animal Ecology, Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany

Personalised recommendations