Advertisement

Naturwissenschaften

, Volume 101, Issue 10, pp 831–837 | Cite as

Now you see me, now you don’t: iridescence increases the efficacy of lizard chromatic signals

  • Guillem Pérez i de LanuzaEmail author
  • Enrique Font
Original Paper

Abstract

The selective forces imposed by primary receivers and unintended eavesdroppers of animal signals often act in opposite directions, constraining the development of conspicuous coloration. Because iridescent colours change their chromatic properties with viewer angle, iridescence offers a potential mechanism to relax this trade-off when the relevant observers involved in the evolution of signal design adopt different viewer geometries. We used reflectance spectrophotometry and visual modelling to test if the striking blue head coloration of males of the lizard Lacerta schreibeiri (1) is iridescent and (2) is more conspicuous when viewed from the perspective of conspecifics than from that of the main predators of adult L. schreibeiri (raptors). We demonstrate that the blue heads of L. schreiberi show angle-dependent changes in their chromatic properties. This variation allows the blue heads to be relatively conspicuous to conspecific viewers located in the same horizontal plane as the sender, while simultaneously being relatively cryptic to birds that see it from above. This study is the first to suggest the use of angle-dependent chromatic signals in lizards, and provides the first evidence of the adaptive function of iridescent coloration based on its detectability to different observers.

Keywords

Coloration Communication Lizard Signal efficacy Viewer geometry Visual modelling 

Notes

Acknowledgments

We are especially grateful to J. Heredero for the design and construction of the goniometer. We thank M. C. Stoddard for helping with TetraColorSpace, and L. J. Fleishman for generously sharing with us visual sensitivity data for Platysaurus broadleyi. This work was funded by a Portuguese FCT postdoctoral fellowship (SFRH/BPD/94582/2013) and a project from the Ministerio de Ciencia e Innovación (CGL2011-23751).

Ethical standards

The study was performed according to guidelines provided by the Association for the Study of Animal Behaviour (ASAB) and the Animal Behavior Society (ABS). The experiments complied with current EU and Spanish laws and permits were generously provided by the Sierra Norte de Guadalajara Natural Park (Junta de Castilla-la Mancha).

References

  1. Andersson S, Prager M (2006) Quantification of coloration. In: Hill GE, McGraw KJ (eds) Bird Coloration, Vol. 1. Mechanisms and Measurements. Harvard University Press, Cambridge, pp 41–89Google Scholar
  2. Bajer K, Molnár O, Török J, Herczeg G (2010) Female European green lizards (Lacerta viridis) prefer males with high ultraviolet throat reflectance. Behav Ecol Sociobiol 64:2007–2014. doi: 10.1007/s00265-010-1012-2 CrossRefGoogle Scholar
  3. Bajer K, Molnár O, Török J, Herczeg G (2011) Ultraviolet nuptial colour determines fight success in male European green lizards (Lacerta viridis). Biol Lett 7:866–868. doi: 10.1098/rsbl.2011.0520 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Bradbury JW, Vehrencamp SL (2011) Principles of animal communication, 2nd edn. Sinauer Assoc Press, SunderlandGoogle Scholar
  5. Csermely D, Bonati B, Romani R (2009) Predatory behaviour of common kestrels (Falco tinnunculus) in the wild. J Ethol 27:461–465. doi: 10.1007/s10164-008-0143-7 CrossRefGoogle Scholar
  6. Cummings ME, Rosenthal GG, Ryan MJ (2003) A private ultraviolet channel in visual communication. P Roy Soc Lond B 270:897–904. doi: 10.1098/rspb.2003.2334 CrossRefGoogle Scholar
  7. Doucet SM, Meadows MG (2009) Iridescence: a functional perspective. J R Soc Interface 6:S115–S132. doi: 10.1098/rsif.2008.0395.focus PubMedCentralPubMedCrossRefGoogle Scholar
  8. Eliason CM, Shawkey MD (2011) Decreased hydrophobicity of iridescent feathers: a potential cost of shiny plumage. J Evol Biol 214:2157–2163. doi: 10.1242/jeb.055822 Google Scholar
  9. Endler JA (1991) Variation in the appearance of guppy color patterns to guppies and their predators under different visual conditions. Vision Res 31:587–608PubMedCrossRefGoogle Scholar
  10. Endler JA, Mielke PW (2005) Comparing entire colour patterns as birds see them. Biol J Linn Soc 86:405–431. doi: 10.1111/j.1095-8312.2005.00540.x CrossRefGoogle Scholar
  11. Endler JA, Théry M (1996) Interacting effects of lek placement, display behavior, ambient light, and color patterns in three neotropical forest-dwelling birds. Am Nat 148:421–452. doi: 10.1086/285934 CrossRefGoogle Scholar
  12. Fleishman LJ (1992) The influence of the sensory system and the environment on motion patterns in the visual displays of anoline lizards and other vertebrates. Am Nat 139:S36–S61CrossRefGoogle Scholar
  13. Fleishman LJ, Leal M, Sheehan J (2006) Illumination geometry, detector position and the objective determination of animal signal colours in natural light. Anim Behav 71:463–474. doi: 10.1016/j.anbehav.2005.06.005 CrossRefGoogle Scholar
  14. Fleishman LJ, Loew ER, Whiting MJ (2011) High sensitivity to short wavelengths in a lizard and implications for understanding the evolution of visual systems in lizards. Proc R Soc B 278:2891–2899. doi: 10.1098/rspb.2011.0118 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Font E, Rome LC (1990) Functional morphology of dewlap extension in the lizard Anolis equestris (Iguanidae). J Morph 206:245–258. doi: 10.1002/jmor.1052060210 PubMedCrossRefGoogle Scholar
  16. Font E, Pérez i de Lanuza G, Sampedro C (2009) Ultraviolet reflectance and cryptic sexual dichromatism in the ocellated lizard, Lacerta (Timon) lepida (Squamata: Lacertidae). Biol J Linn Soc 97:766–780. doi: 10.1111/j.1095-8312.2009.01251.x CrossRefGoogle Scholar
  17. Griggio M, Serra L, Licheri D, Campomori C, Pilastro A (2009) Moult speed affects structural feather ornaments in the blue tit. J Evol Biol 22:782–792. doi: 10.1111/j.1420-9101.2009.01700.x PubMedCrossRefGoogle Scholar
  18. Guilford T, Dawkins MS (1991) Receiver psychology and the evolution of animal signals. Anim Behav 42:1–14CrossRefGoogle Scholar
  19. Hamilton DG, Whiting MJ, Pryke SR (2013) Fiery frills: carotenoid-based coloration predicts contest success in frillneck lizards. Behav Ecol 24:1138–1149. doi: 10.1093/beheco/art041 CrossRefGoogle Scholar
  20. Kemp DJ (2008) Female mating biases for bright ultraviolet iridescence in the butterfly Eurema hecabe (Pieridae). Behav Ecol 19:1–8. doi: 10.1093/beheco/arm094 CrossRefGoogle Scholar
  21. Kemp DJ, Rutowski RL (2007) Condition dependence, quantitative genetics, and the potential signal content of iridescent ultraviolet butterfly coloration. Evolution 61:168–183. doi: 10.1111/j.1558-5646.2007.00014.x PubMedCrossRefGoogle Scholar
  22. Kemp DJ, Herberstein ME, Grether GF (2012) Unraveling the true complexity of costly color signaling. Behav Ecol 23:233–236. doi: 10.1093/beheco/arr153 CrossRefGoogle Scholar
  23. Kemp DJ, Jones D, Macedonia JM, Krockenberger AK (2014) Female mating preferences and male signal variation in iridescent Hypolimnas butterflies. Anim Behav 87:221–229. doi: 10.1016/j.anbehav.2013.11.001 CrossRefGoogle Scholar
  24. Keyser AJ, Hill GE (1999) Condition-dependent variation in the blue-ultraviolet coloration of a structurally based plumage ornament. P Roy Soc Lond B 266:771–777CrossRefGoogle Scholar
  25. Land MF (1972) The physics and biology of animal reflectors. Prog Biophys Mol Biol 24:75–106PubMedCrossRefGoogle Scholar
  26. Lind O, Mitkus M, Olsson P, Kelber A (2013) Ultraviolet sensitivity and colour vision in raptor foraging. J Exp Biol 216:1819–1826. doi: 10.1242/jeb.082834 PubMedCrossRefGoogle Scholar
  27. Martín J, López P (2009) Multiple color signals may reveal multiple messages in male Schreiber’s green lizards, Lacerta schreiberi. Behav Ecol Sociobiol 63:1743–1755. doi: 10.1007/s00265-009-0794-6 CrossRefGoogle Scholar
  28. Mäthger LM, Denton EJ, Marshall NJ, Hanlon RT (2009) Mechanisms and behavioural functions of structural colouration in cephalopods. J R Soc Interface 6:S149–S163. doi: 10.1098/rsif.2008.0366.focus PubMedCentralPubMedCrossRefGoogle Scholar
  29. Meadows MG, Butler MW, Morehouse NI, Taylor LA, Toomey MB, McGraw KJ, Rutowski RL (2009) Iridescence: views from many angles. J R Soc Interface 6:S107–S113. doi: 10.1098/rsif.2009.0013.focus PubMedCentralPubMedCrossRefGoogle Scholar
  30. Meadows MG, Morehouse NI, Rutowski RL, Douglas JM, McGraw KJ (2011) Quantifying iridescent coloration in animals: a method for improving repeatability. Behav Ecol Sociobiol 65:1317–1327. doi: 10.1007/s00265-010-1135-5 CrossRefGoogle Scholar
  31. Meadows MG, Roudybush TE, McGraw KJ (2012) Dietary protein level affects iridescent coloration in Anna’s hummingbirds, Calypte anna. J Evol Biol 215:2742–2750. doi: 10.1242/jeb.069351 Google Scholar
  32. Morrison RL (1995) A transmission electron microscopic (TEM) method for determining structural colors reflected by lizard iridophores. Pigm Cell Res 8:28–36CrossRefGoogle Scholar
  33. Noh H, Liew SF, Saranathan V, Mochrie SGJ, Prum RO, Dufresne ER, Cao H (2010) How noniridescent colors are generated by quasi-ordered structures of bird feathers. Adv Mater 22:2871–2880. doi: 10.1002/adma.200903699 PubMedCrossRefGoogle Scholar
  34. Ödeen A, Håstad O (2003) Complex distribution of avian color vision systems revealed by sequencing the SWS1 opsin from total DNA. Mol Biol Evol 20:855–861. doi: 10.1093/molbev/msg108 PubMedCrossRefGoogle Scholar
  35. Osorio D, Ham AD (2002) Spectral reflectance and directional properties of structural coloration in bird plumage. J Exp Biol 205:2017–2027PubMedGoogle Scholar
  36. Pérez i de Lanuza G (2012) Visió en color i coloracions dels lacèrtids. PhD thesis, University of València, ValènciaGoogle Scholar
  37. Pérez i de Lanuza G, Font E (2011) Lizard blues: blue body colouration and ultraviolet polychromatism in lacertids. Rev Esp Herp 24:67–84Google Scholar
  38. Pérez i de Lanuza G, Font E (2014) Ultraviolet vision in lacertid lizards: evidence from retinal structure, eye transmittance, SWS1 visual pigment genes, and behaviour. J Exp Biol 217:1–11. doi: 10.1242/jeb.104281 CrossRefGoogle Scholar
  39. Pérez i de Lanuza G, Font E, Monterde JL (2013) Using visual modelling to study the evolution of lizard colouration: sexual selection drives the evolution of sexual dichromatism in lacertids. J Evol Biol 26:1826–1835. doi: 10.1111/jeb.12185 PubMedCrossRefGoogle Scholar
  40. Pérez-Mellado V (1998) Lacerta schreiberi Bedriaga, 1878. In: Salvador A (coord) Reptiles. Fauna Ibérica. Vol. 10. Museo Nacional de Ciencias Naturales, Madrid, pp 218–227Google Scholar
  41. Prum RO (2006) Anatomy, physics, and evolution of avian structural colors. In: Hill GE, McGraw KJ (eds) Bird coloration, vol 1, Mechanisms and measurements. Harvard University Press, Cambridge, pp 295–355Google Scholar
  42. Rohrlich ST, Porter KR (1972) Fine structural observations relating to the production of color by the iridophores of a lizard, Anolis carolinensis. J Cell Biol 53:38–52PubMedCentralPubMedCrossRefGoogle Scholar
  43. Rowe C (2013) Receiver psychology: a receiver’s perspective. Anim Behav 85:517–523. doi: 10.1016/j.anbehav.2013.01.004 CrossRefGoogle Scholar
  44. Rutowski RL, Nahm AC, Macedonia JM (2010) Iridescent hindwing patches in the Pipevine Swallowtail: differences in dorsal and ventral surfaces relate to signal function and context. Funct Ecol 24:767–775. doi: 10.1111/j.1365-2435.2010.01693.x CrossRefGoogle Scholar
  45. Saranathan V, Forster JD, Noh H, Liew S-F, Mochrie SGJ, Cao H, Dufresne ER, Prum RO (2012) Structure and optical function of amorphous photonic angle X-ray scattering (SAXS) analysis of 230 bird species nanostructures from avian feather barbs: a comparative small. J R Soc Interface 9:2563–2580. doi: 10.1098/rsif.2012.0191 PubMedCentralPubMedCrossRefGoogle Scholar
  46. Shawkey MD, Estes AM, Sieferman L, Hill GE (2005) The anatomical basis of sexual dichromatism in non-iridescent ultraviolet-blue structural coloration of feathers. Biol J Linn Soc 84:259–271. doi: 10.1111/j.1095-8312.2005.00428.x CrossRefGoogle Scholar
  47. Sicsú P, Manica LT, Maia R, Macedo RH (2013) Here comes the sun: multimodal displays are associated with sunlight incidence. Behav Ecol Sociobiol 67:1633–1642. doi: 10.1007/s00265-013-1574-x CrossRefGoogle Scholar
  48. Stevens M (2013) Sensory Ecology, Behaviour, and Evolution. Oxford University Press, OxfordCrossRefGoogle Scholar
  49. Stoddard MC, Prum RO (2008) Evolution of avian plumage color in a tetrahedral color space: a phylogenetic analysis of new world buntings. Am Nat 171:755–776. doi: 10.1086/587526 PubMedCrossRefGoogle Scholar
  50. Stuart-Fox DM, Whiting MJ, Moussalli A (2006) Camouflage and colour change: antipredator responses to bird and snake predators across multiple populations in a dwarf chameleon. Biol J Linn Soc 88:437–446. doi: 10.1111/j.1095-8312.2006.00631.x CrossRefGoogle Scholar
  51. Stuart-Fox D, Godinho R, de Bellocq JG, Irwin NR, Brito JC, Moussalli A, Široky P, Hugall AF, Baird SJE (2009) Variation in phenotype, parasite load and male competitive ability across a cryptic hybrid zone. PLoS ONE 4:e5677. doi: 10.1371/journal.pone.0005677 PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.CIBIO Research Centre in Biodiversity and Genetic Resources, InBIOUniversidade do PortoVila do CondePortugal
  2. 2.Ethology Laboratory Institut Cavanilles de Biodiversitat i Biologia EvolutivaUniversitat de ValènciaValenciaSpain

Personalised recommendations