Advertisement

Naturwissenschaften

, Volume 101, Issue 7, pp 557–563 | Cite as

Spontaneous expression of magnetic compass orientation in an epigeic rodent: the bank vole, Clethrionomys glareolus

  • Ludmila OliveriusováEmail author
  • Pavel Němec
  • Zuzana Pavelková
  • František Sedláček
Original Paper

Abstract

Magnetoreception has been convincingly demonstrated in only a few mammalian species. Among rodents, magnetic compass orientation has been documented in four species of subterranean mole rats and two epigeic (i.e. active above ground) species—the Siberian hamster and the C57BL/6J mouse. The mole rats use the magnetic field azimuth to determine compass heading; their directional preference is spontaneous and unimodal, and their magnetic compass is magnetite-mediated. By contrast, the primary component of orientation response is learned in the hamster and the mouse, but both species also exhibit a weak spontaneous bimodal preference in the natural magnetic field. To determine whether the magnetic compass of wild epigeic rodents features the same functional properties as that of laboratory rodents, we investigated magnetic compass orientation in the bank vole Clethrionomys glareolus (Cricetidae, Rodentia). The voles exhibited a robust spontaneous bimodal directional preference, i.e. built nests and slept preferentially along the north-south axis, and deflected their directional preference according to a shift in the direction of magnetic north, clearly indicating that they were deriving directional information from the magnetic field. Thus, bimodal, axially symmetrical directional choice seems to be a common feature shared by epigeic rodents. However, spontaneous directional preference in the bank vole appeared to be more pronounced than that reported in the hamster and the mouse. These findings suggest that bank voles are well suited for future studies investigating the adaptive significance and mechanisms of magnetic orientation in epigeic rodents.

Keywords

Spatial orientation Magnetoreception Magnetite-based mechanism Radical pair-based mechanism Bank vole 

Notes

Acknowledgments

We cordially thank Radka Peskova for taking care of the bank voles in the breeding colony at the University of South Bohemia, Vitezslav Stranak for measuring light spectra, and Frantisek Hruska, Jaroslav Vojta and Jiri Base for measuring extremely low- and radio-frequency electromagnetic fields. The study was supported by the Grant Agency of the University of South Bohemia [136/2010/P to L.O., 159/2013/P to F.S.] and the Grant Agency of Charles University [116510 to P.N.].

Supplementary material

114_2014_1192_MOESM1_ESM.pdf (1.6 mb)
ESM 1 (PDF 1660 kb)

References

  1. August PV, Ayvazian SG, Anderson JGT (1989) Magnetic orientation in a small mammal, Peromyscus leucopus. J Mammal 70(1):1–9CrossRefGoogle Scholar
  2. Batschelet E (1981) Circular statistics in biology. Academic, LondonGoogle Scholar
  3. Begall S, Červený J, Neef J, Vojtech O, Burda H (2008) Magnetic alignment in grazing and resting cattle and deer. Proc Natl Acad Sci U S A 105(36):13451–13455. doi: 10.1073/pnas.0803650105 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Begall S, Burda H, Červený J, Gerter O, Neef-Weisse J, Němec P (2011) Further support for the alignment of cattle along magnetic field lines: reply to Hert et al. J Comp Physiol A 197(12):1127–1133. doi: 10.1007/s00359-011-0674-1 CrossRefGoogle Scholar
  5. Begall S, Malkemper EP, Červený J, Němec P, Burda H (2013) Magnetic alignment in mammals and other animals. Mammal Biol 78(1):10–20. doi: 10.1016/j.mambio.2012.05.005 Google Scholar
  6. Betancur C, Dell'Omo G, Alleva E (1994) Magnetic field effects on stress-induced analgesia in mice: modulation by light. Neurosci Lett 182(2):147–150. doi: 10.1016/0304-3940(94)90784-6 PubMedCrossRefGoogle Scholar
  7. Burda H, Marhold S, Westenberger T, Wiltschko R, Wiltschko W (1990) Magnetic compass orientation in the subterranean rodent Cryptomys hottentotus (Bathyergidae). Experientia 46(5):528–530. doi: 10.1007/bf01954256 PubMedCrossRefGoogle Scholar
  8. Burda H, Begall S, Červený J, Neef J, Němec P (2009) Extremely low-frequency electromagnetic fields disrupt magnetic alignment of ruminants. Proc Natl Acad Sci U S A 106(14):5708–5713. doi: 10.1073/pnas.0811194106 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Burger T, Lucova M, Moritz RE, Oelschlager HHA, Druga R, Burda H, Wiltschko W, Wiltschko R, Němec P (2010) Changing and shielded magnetic fields suppress c-Fos expression in the navigation circuit: input from the magnetosensory system contributes to the internal representation of space in a subterranean rodent. J R Soc Interface 7(50):1275–1292. doi: 10.1098/rsif.2009.0551 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Červený J, Begall S, Koubek P, Nováková P, Burda H (2011) Directional preference may enhance hunting accuracy in foraging foxes. Biol Lett 7(3):355–357. doi: 10.1098/rsbl.2010.1145 PubMedCentralPubMedCrossRefGoogle Scholar
  11. Deutschlander ME, Freake MJ, Borland SC, Phillips JB, Madden RC, Anderson LE, Wilson BW (2003) Learned magnetic compass orientation by the Siberian hamster, Phodopus sungorus. Anim Behav 65:779–786. doi: 10.1006/anbe.2003.2111 CrossRefGoogle Scholar
  12. Follmann DA, Proschan MA (1999) A simple permutation—type method for testing circular uniformity with correlated angular measurements. Biometrics 55(3):782–791PubMedCrossRefGoogle Scholar
  13. Hart V, Nováková P, Malkemper EP, Begall S, Hanzal V, Ježek M, Kušta T, Němcová V, Adámková J, Benediktová K, Červený J, Burda H (2013) Dogs are sensitive to small variations of the Earth’s magnetic field. Front Zool 10(1):1–12. doi: 10.1186/1742-9994-10-80 CrossRefGoogle Scholar
  14. Holland RA, Borissov I, Siemers BM (2010) A nocturnal mammal, the greater mouse-eared bat, calibrates a magnetic compass by the sun. Proc Natl Acad Sci U S A 107(15):6941–6945. doi: 10.1073/pnas.0912477107 PubMedCentralPubMedCrossRefGoogle Scholar
  15. Holland RA, Helm B (2013) A strong magnetic pulse affects the precision of departure direction of naturally migrating adult but not juvenile birds. J R Soc Interface 10 (81)Google Scholar
  16. Holland RA, Kirschvink JL, Doak TG, Wikelski M (2008) Bats use magnetite to detect the Earth’s magnetic field. PLoS One 3(2):e1676. doi: 10.1371/journal.pone.0001676
  17. Holland RA, Thorup K, Vonhof MJ, Cochran WW, Wikelski M (2006) Navigation: bat orientation using Earth’s magnetic field. Nature 444(7120):702. doi: 10.1038/444702a PubMedCrossRefGoogle Scholar
  18. Johnsen S, Mattern E, Ritz T (2007) Light-dependent magnetoreception: quantum catches and opponency mechanisms of possible photosensitive molecules. J Exp Biol 210(18):3171–3178. doi: 10.1242/jeb.007567 PubMedCrossRefGoogle Scholar
  19. Kimchi T, Terkel J (2001) Magnetic compass orientation in the blind mole rat Spalax ehrenbergi. J Exp Biol 204(4):751–758PubMedGoogle Scholar
  20. Kirschvink JL (1982) Birds, bees and magnetism: a new look at the old problem of magnetoreception. Trends Neurosci 5:160–167. doi: 10.1016/0166-2236(82)90090-X CrossRefGoogle Scholar
  21. Kirschvink JL, Walker MM, Diebel CE (2001) Magnetite-based magnetoreception. Curr Opin Neurobiol 11(4):462–467. doi: 10.1016/s0959-4388(00)00235-x PubMedCrossRefGoogle Scholar
  22. Madden R, Phillips J (1987) An attempt to demonstrate magnetic compass orientation in two species of mammals. Learn Behav 15(2):130–134. doi: 10.3758/bf03204958 CrossRefGoogle Scholar
  23. Marhold S, Burda H, Kreilos I, Wiltschko W (1997a) Magnetic orientation in common mole-rats from Zambia. In: Orientation and navigation—birds, humans and other animals. Royal Institute of Navigation, Oxford. Paper 5Google Scholar
  24. Marhold S, Wiltschko W, Burda H (1997b) A magnetic polarity compass for direction finding in a subterranean mammal. Naturwissenschaften 84(9):421–423. doi: 10.1007/s001140050422 CrossRefGoogle Scholar
  25. Mather JG, Baker RR (1981) Magnetic sense of direction in woodmice for route-based navigation. Nature 291(5811):152–155CrossRefGoogle Scholar
  26. Merritt R, Purcell C, Stroink G (1983) Uniform magnetic field produced by three, four, and five square coils. Rev Sci Instrum 54(7):879–882. doi: 10.1063/1.1137480 CrossRefGoogle Scholar
  27. Muheim R, Edgar NM, Sloan KA, Phillips JB (2006) Magnetic compass orientation in C57BL/6J mice. Learn Behav 34(4):366–373. doi: 10.3758/BF03193201 PubMedCrossRefGoogle Scholar
  28. Němec P, Altmann J, Marhold S, Burda H, Oelschlager HHA (2001) Neuroanatomy of magnetoreception: the superior colliculus involved in magnetic orientation in a mammal. Science 294(5541):366–368. doi: 10.1126/science.1063351 PubMedCrossRefGoogle Scholar
  29. Němec P, Burda H, Oelschlager HHA (2005) Towards the neural basis of magnetoreception: a neuroanatomical approach. Naturwissenschaften 92(4):151–157. doi: 10.1007/s00114-005-0612-6 PubMedCrossRefGoogle Scholar
  30. Němec P, Cvekova P, Burda H, Benada O, Peichl L (2007) Visual systems and the role of vision in subterranean rodents: Diversity of retinal properties and visual system designs. In: Begall S, Burda H, Schleich CE (eds) Subterranean rodents: News from underground. Springer, Heidelberg, pp 129–160. doi: 10.1007/978-3-540-69276-8_11 CrossRefGoogle Scholar
  31. Oliveriusová L, Němec P, Králová Z, Sedláček F (2012) Magnetic compass orientation in two strictly subterranean rodents: learned or species-specific innate directional preference? J Exp Biol 215(20):3649–3654. doi: 10.1242/jeb.069625 PubMedCrossRefGoogle Scholar
  32. Painter MS, Dommer DH, Altizer WW, Muheim R, Phillips JB (2013) Spontaneous magnetic orientation in larval Drosophila shares properties with learned magnetic compass responses in adult flies and mice. J Exp Biol 216(7):1307–1316. doi: 10.1242/jeb.077404 PubMedCrossRefGoogle Scholar
  33. Phillips JB, Muheim R, Jorge PE (2010) A behavioral perspective on the biophysics of the light-dependent magnetic compass: a link between directional and spatial perception? J Exp Biol 213(19):3247–3255. doi: 10.1242/jeb.020792 PubMedCrossRefGoogle Scholar
  34. Phillips JB, Youmans PW, Muheim R, Sloan KA, Landler L, Painter MS, Anderson CR (2013) Rapid learning of magnetic compass direction by C57BL/6 Mice in a 4-armed ‘plus’ water maze. PLoS One 8(8):e73112. doi: 10.1371/journal.pone.0073112 PubMedCentralPubMedCrossRefGoogle Scholar
  35. Prato FS, Desjardins-Holmes D, Keenliside LD, McKay JC, Robertson JA, Thomas AW (2009) Light alters nociceptive effects of magnetic field shielding in mice: intensity and wavelength considerations. J R Soc Interface 6(30):17–28. doi: 10.1098/rsif.2008.0156 PubMedCentralPubMedCrossRefGoogle Scholar
  36. Prato FS, Desjardins-Holmes D, Keenliside LD, DeMoor JM, Robertson JA, Thomas AW (2013) Magnetoreception in laboratory mice: sensitivity to extremely low-frequency fields exceeds 33 nT at 30 Hz. J R Soc Interface 10(81):20121046. doi: 10.1098/rsif.2012.1046 PubMedCentralPubMedCrossRefGoogle Scholar
  37. Ritz T, Adem S, Schulten K (2000) A model for photoreceptor-based magnetoreception in birds. Biophys J 78(2):707–718. doi: 10.1016/S0006-3495(00)76629-X PubMedCentralPubMedCrossRefGoogle Scholar
  38. Ritz T, Thalau P, Phillips JB, Wiltschko R, Wiltschko W (2004) Resonance effects indicate a radical-pair mechanism for avian magnetic compass. Nature 429(6988):177–180. doi: 10.1038/nature02534 PubMedCrossRefGoogle Scholar
  39. Ritz T, Wiltschko R, Hore PJ, Rodgers CT, Stapput K, Thalau P, Timmel CR, Wiltschko W (2009) Magnetic compass of birds is based on a molecule with optimal directional sensitivity. Biophys J 96(8):3451–3457. doi: 10.1016/j.bpj.2008.11.072 PubMedCentralPubMedCrossRefGoogle Scholar
  40. Sauvé JP (1985) Contribution a l’etude des capacites d’orientation a grande distance des petits rongeurs: Analse methodologique de l’orientation initiale des mulots (Apodemus sylvaticus) en cage d’orientation. DEA Neurosciences Sciences du comportement Universite d’Aix-Marseille IIGoogle Scholar
  41. Slabý P, Tomanová K, Vácha M (2013) Cattle on pastures do align along the North–South axis, but the alignment depends on herd density. J Comp Physiol A 199(8):695–701. doi: 10.1007/s00359-013-0827-5 CrossRefGoogle Scholar
  42. Thalau P, Ritz T, Burda H, Wegner RE, Wiltschko R (2006) The magnetic compass mechanisms of birds and rodents are based on different physical principles. J R Soc Interface 3(9):583–587. doi: 10.1098/rsif.2006.0130 PubMedCentralPubMedCrossRefGoogle Scholar
  43. Vácha M, Půžová T, Kvíčalová M (2009) Radio frequency magnetic fields disrupt magnetoreception in American cockroach. J Exp Biol 212(21):3473–3477. doi: 10.1242/jeb.028670 PubMedCrossRefGoogle Scholar
  44. Wang YN, Pan YX, Parsons S, Walker M, Zhang SY (2007) Bats respond to polarity of a magnetic field. Proc R Soc B 274(1627):2901–2905. doi: 10.1098/rspb.2007.0904 PubMedCentralPubMedCrossRefGoogle Scholar
  45. Wegner RE, Begall S, Burda H (2006) Magnetic compass in the cornea: local anaesthesia impairs orientation in a mammal. J Exp Biol 209(23):4747–4750. doi: 10.1242/jeb.02573 PubMedCrossRefGoogle Scholar
  46. Wiltschko R, Wiltschko W (1995) Magnetic orientation in animals. Springer, New YorkCrossRefGoogle Scholar
  47. Wiltschko W, Wiltschko R (2005) Magnetic orientation and magnetoreception in birds and other animals. J Comp Physiol A 191(8):675–693. doi: 10.1007/s00359-005-0627-7 CrossRefGoogle Scholar
  48. Wiltschko W, Munro U, Wiltschko R, Kirschvink JL (2002) Magnetite-based magnetoreception in birds: the effect of a biasing field and a pulse on migratory behaviour. J Exp Biol 205(19):3031–3037PubMedGoogle Scholar
  49. Wiltschko R, Stapput K, Thalau P, Wiltschko W (2010) Directional orientation of birds by the magnetic field under different light conditions. J R Soc Interface 7(Suppl 2):S163–S177. doi: 10.1098/rsif.2009.0367.focus PubMedCentralPubMedCrossRefGoogle Scholar
  50. Winklhofer M, Kirschvink JL (2010) A quantitative assessment of torque-transducer models for magnetoreception. J R Soc Interface 7:S273–S289. doi: 10.1098/rsif.2009.0435.focus PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Ludmila Oliveriusová
    • 1
    Email author
  • Pavel Němec
    • 2
  • Zuzana Pavelková
    • 2
  • František Sedláček
    • 1
  1. 1.Department of Zoology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  2. 2.Department of Zoology, Faculty of ScienceCharles University in PraguePraha 2Czech Republic

Personalised recommendations