, Volume 101, Issue 7, pp 533–540 | Cite as

David and Goliath: potent venom of an ant-eating spider (Araneae) enables capture of a giant prey

  • Stano PekárEmail author
  • Onřej Šedo
  • Eva Líznarová
  • Stanislav Korenko
  • Zdeněk Zdráhal
Original Paper


It is rare to find a true predator that repeatedly and routinely kills prey larger than itself. A solitary specialised ant-eating spider of the genus Zodarion can capture a relatively giant prey. We studied the trophic niche of this spider species and investigated its adaptations (behavioural and venomic) that are used to capture ants. We found that the spider captures mainly polymorphic Messor arenarius ants. Adult female spiders captured large morphs while tiny juveniles captured smaller morphs, yet in both cases ants were giant in comparison with spider size. All specimens used an effective prey capture strategy that protected them from ant retaliation. Juvenile and adult spiders were able to paralyse their prey using a single bite. The venom glands of adults were more than 50 times larger than those of juvenile spiders, but the paralysis latency of juveniles was 1.5 times longer. This suggests that this spider species possesses very potent venom already at the juvenile stage. Comparison of the venom composition between juvenile and adult spiders did not reveal significant differences. We discovered here that specialised capture combined with very effective venom enables the capture of giant prey.


Adaptations Ant-eater Araneae Venom Specialist 



We would like to thank Y. Lubin for providing us with a collection permit at the Mashabbim sand dunes. We are grateful to G. Corcobado, M. Guererro, J. Král, L. Mestre, and J. Niedobová for help with spider collection in the field, and to L. Sentenská and D. Fridrichová for help in the laboratory. We would also like to thank C. Komposch for his suggestion for the title of this paper. This work was supported by CEITEC project (CZ.1.05/1.1.00/02.0068), CEITEC open access project (LM2011020), and the grant provided by the Czech Science Foundation. SK was supported by the project of European Science Foundation and Ministry for Education and Youth of the Czech Republic CZ.1.07/2.3.00/30.0040 and “Účelová podpora na specifický vysokoškolský výzkum” provided by Ministry for Education and Youth of the Czech Republic.


  1. Aviles L, Tufino P (1998) Colony size and individual fitness in the social spider Anelosimus eximius. Am Nat 152:403–418PubMedCrossRefGoogle Scholar
  2. Balgooyen TC (1976) Behaviour and ecology of the American Kestrel (Falco sparverius L.) in the Sierra Nevada of California. Univ Calif Publ Zool 103:1–83Google Scholar
  3. Bulbert MW, Herberstein ME, Cassis G (2014) Assassin bug requires dangerous ant prey to bite first. Current Biol 24(6):R220–R221CrossRefGoogle Scholar
  4. Cárdenas M, Jiroš P, Pekár S (2012) Selective olfactory attention of a specialised predator to intraspecific chemical signals of its prey. Naturwissenschaften 99(8):597–605PubMedCrossRefGoogle Scholar
  5. Coddington JA, Levi HW (1991) Systematics and evolution of spiders (Araneae). Annu Rev Ecol Syst 22:565–592CrossRefGoogle Scholar
  6. Dejean A, Leroy C, Corbara B, Céréghino R, Orivel J, Boulay R (2010) Arboreal ants use the “Velcro ® principle” to capture very large prey. PLoS One 5(6):e11331PubMedCentralPubMedCrossRefGoogle Scholar
  7. Duda TF Jr, Lee T (2009) Isolation and population divergence of a widespread Indo-West Pacific marine gastropod at Easter Island. Mar Biol 156(6):1193–1202CrossRefGoogle Scholar
  8. Dufton MJ (1992) Venomous mammals. Pharmacol Ther 53:199–215PubMedCrossRefGoogle Scholar
  9. Eberhard WG (1980) The natural history and behavior of the bolas spider Mastophora dizzydeani sp. n. (Araneidae). Psyche 87(3–4):143–169CrossRefGoogle Scholar
  10. Enders F (1975) The influence of hunting manner on prey size, particularly in spiders with long attack distance (Araneidae, Linyphiidae, and Salticidae). Am Nat 109:737–763CrossRefGoogle Scholar
  11. Escoubas P, Célérier ML, Nakajima T (1997) High-performance liquid chromatography matrix-assisted laser desorption/ionization time-of-flight mass spectrometry peptide fingerprinting of tarantula venoms in the genus Brachypelma: chemotaxonomic and biochemical applications. Rapid Commun Mass Spectrom 11:1891–1899PubMedCrossRefGoogle Scholar
  12. Franklin CE (1988) Behavioural observations and neurophysiological responses of cockroaches envenomated with Latrodectus katipo venom. Comp Biochem Physiol C 89:117–120PubMedCrossRefGoogle Scholar
  13. Gregorič M, Agnarsson I, Blackledge TA, Kuntner M (2011) Darwin’s bark spider: giant prey in a giant orb webs (Caerostris darwini, Araneae: Araneidae)? J Arachnol 39:287–295CrossRefGoogle Scholar
  14. Griffiths D (1980) Foraging costs and relative prey size. Am Nat 116:743–752CrossRefGoogle Scholar
  15. Harland DP, Jackson RR (2006) A knife in the back: use of prey-specific attack tactics by araneophagic jumping spiders (Araneae: Salticidae). J Zool 269:285–290CrossRefGoogle Scholar
  16. Herzig V, Ward RJ, Dos Santos WF (2004) Ontogenetic changes in Phoneutria nigriventer (Araneae, Ctenidae) spider venom. Toxicon 44: 635-640.Google Scholar
  17. Hölldobler B, Wilson EO (1990) The ants. Springer, BerlinCrossRefGoogle Scholar
  18. Jackson RR, Li D (2001) Prey capture techniques and prey preferences of Zenodorus durvillei, Z. metallescens and Z. orbiculatus, tropical ant-eating jumping spiders (Araneae: Salticidae) from Australia. NZ J Zool 28:299–341CrossRefGoogle Scholar
  19. Kozlov SA, Vassilevski AA, Feofanov AV, Surovoy AY, Karpunin DV, Grishin E (2006) Latarcins, antimicrobial and cytolytic peptides from the venom of the spider Lachesana tarabaevi (Zodariidae) that exemplify biomolecular diversity. J Biol Chem 281(30):20983–20992PubMedCrossRefGoogle Scholar
  20. Kruuk H (1972) The spotted Hyena. University of Chicago Press, ChicagoGoogle Scholar
  21. Kuhn-Nentwig L, Stöcklin R, Nentwig W (2011) Venom composition and strategies in spiders. Is everything possible? Adv Insect Physiol 40:1–86CrossRefGoogle Scholar
  22. Kuzmenkov AI, Fedorova IM, Vassilevski AA, Grishin EV (2013) Cysteine-rich toxins from Lachesana tarabaevi spider venom with amphiphilic C-terminal segments. Biochim Biophys Acta 1828:724–731PubMedCrossRefGoogle Scholar
  23. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685PubMedCrossRefGoogle Scholar
  24. Lazar I (2010) Gel Analyzer software. Available at
  25. Lepš J, Šmilauer P (2003) Multivariate analysis of ecological data using CANOCO. Cambridge University Press, CambridgeGoogle Scholar
  26. Levy G (1992) The spider genera Palaestina, Trygetus, Zodarion and Ranops (Araneae, Zodariidae) in Israel with annotations on species of the Middle East. Israel J Zool 38:67–110Google Scholar
  27. Li D, Jackson RR, Harland DP (1999) Prey-capture techniques and prey preferences of Aelurillus aeruginosus, A. cognatus and A. kochi, ant-eating jumping spiders (Araneae: Salticidae) from Israel. Isr J Zool 45:341–359Google Scholar
  28. Mackessy SP (2010) Crotalus viridis viridis (Prairie Rattlesnake). Noxious weeds as a hazard to snakes. Herpetol Rev 41(3):363Google Scholar
  29. Martišová M, Bilde T, Pekár S (2009) Sex-specific kleptoparasitic foraging in ant-eating spiders. Anim Behav 78:1115–1118CrossRefGoogle Scholar
  30. McCue MD (2005) Enzyme activities and biological functions of snake venoms. Appl Herpetol 2:109–123CrossRefGoogle Scholar
  31. Nakazawa T, Ohba S, Ushio M (2013) Predator–prey body size relationships when predators can consume prey larger than themselves. Biol Lett 9:20121193PubMedCentralPubMedCrossRefGoogle Scholar
  32. Nentwig W (1987) The prey of spiders. In: Nentwig W (ed) Ecophysiology of spiders. Springer, Berlin, pp 249–263CrossRefGoogle Scholar
  33. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H (2012) Package 'vegan' version 2.0-2Google Scholar
  34. Pekár S (2004) Predatory behavior of two European ant-eating spiders (Araneae, Zodariidae). J Arachnol 32:31–41CrossRefGoogle Scholar
  35. Pekár S (2005) Predatory characteristics of ant-eating Zodarion spiders (Araneae: Zodariidae): potential biological control agents. Biol Control 34(2):196–203CrossRefGoogle Scholar
  36. Pekár S, Král J, Lubin Y (2005) Natural history and karyotype of some ant-eating zodariid spiders (Araneae: Zodariidae) from Israel. J Arachnol 33(1):50–62CrossRefGoogle Scholar
  37. Pekár S, Brabec M (2009) Modern analysis of biological data. 1. Generalised Linear Models in R. Scientia, PrahaGoogle Scholar
  38. Pekár S, Lubin Y (2009) Prey and predatory behaviour of two zodariid spiders (Araneae, Zodariidae). J Arachnol 37(1):118–121CrossRefGoogle Scholar
  39. Pekár S, Bilde T, Martišová M (2011) Intersexual trophic niche partitioning in an ant-eating spider (Araneae: Zodariidae). PLoS One 6(1):e14603PubMedCentralPubMedCrossRefGoogle Scholar
  40. R Core Team (2012) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL
  41. Rabilloud T, Vaezzadeh AR, Potier N, Lelong C, Leize-Wagner E, Chevallet M (2009) Power and limitations of electrophoretic separations in proteomics strategies. Mass Spectrom Rev 28:816–843PubMedCrossRefGoogle Scholar
  42. Rash LD, Hodgson WC (2002) Pharmacology and biochemistry of spider venoms. Toxicon 40:225–254PubMedCrossRefGoogle Scholar
  43. Rohou A, Nield J, Ushkaryov YA (2007) Insecticidal toxins from black widow spider venom. Toxicon 49(4):531–49.Google Scholar
  44. Sasa M (1999) Diet and snake venom evolution: can local selection alone explain intraspecifc venom variation? Toxicon 37:249–252PubMedCrossRefGoogle Scholar
  45. Schaller GB (1972) The Serengeti lion. University of Chicago Press, ChicagoGoogle Scholar
  46. Shevchenko A, Tomas H, Havlis J, Olsen JV, Mann M (2006) In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nat Protoc 1:2856–2860PubMedCrossRefGoogle Scholar
  47. Turner M (1979) Diet and feeding phenology of the green lynx spider, Peucetia viridans (Araneae: Oxyopidae). J Arachnol 7(2):149–154Google Scholar
  48. Vassilevski AA, Kozlov SA, Samsonova OV, Egorova NS, Karputin DV, Pluzhnikov KA, Feofanov AV, Grishin EV (2008) Cyto-insectotoxins, a novel class of cytolytic and insecticidal peptides from spider venom. Biochem J 411:687–696PubMedCrossRefGoogle Scholar
  49. Yip EC, Powers KS, Avilés L (2008) Cooperative capture of large prey solves scaling challenges faced by spider societies. PNAS 105(33):11818–11822PubMedCentralPubMedCrossRefGoogle Scholar
  50. Zeh JA, Zeh DW (1990) Cooperative foraging for large prey by Paratemnus elongatus (Pseudoscorpionida, Atemnidae). J Arachnol 18:307–311Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Stano Pekár
    • 1
    Email author
  • Onřej Šedo
    • 2
    • 3
  • Eva Líznarová
    • 1
  • Stanislav Korenko
    • 4
  • Zdeněk Zdráhal
    • 2
    • 3
  1. 1.Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  2. 2.Research Group Proteomics, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of TechnologyMasaryk UniversityBrnoCzech Republic
  3. 3.National Centre for Biomolecular Research, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
  4. 4.Department of Agroecology and Biometeorology, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life SciencesPrague 6-SuchdolCzech Republic

Personalised recommendations