Advertisement

Naturwissenschaften

, Volume 101, Issue 4, pp 323–330 | Cite as

Nesting habits shape feeding preferences and predatory behavior in an ant genus

  • Alain Dejean
  • Nicolas Labrière
  • Axel Touchard
  • Frédéric Petitclerc
  • Olivier Roux
Original Paper

Abstract

We tested if nesting habits influence ant feeding preferences and predatory behavior in the monophyletic genus Pseudomyrmex (Pseudomyrmecinae) which comprises terrestrial and arboreal species, and, among the latter, plant-ants which are obligate inhabitants of myrmecophytes (i.e., plants sheltering so-called plant-ants in hollow structures). A cafeteria experiment revealed that the diet of ground-nesting Pseudomyrmex consists mostly of prey and that of arboreal species consists mostly of sugary substances, whereas the plant-ants discarded all the food we provided. Workers forage solitarily, detecting prey from a distance thanks to their hypertrophied eyes. Approach is followed by antennal contact, seizure, and the manipulation of the prey to sting it under its thorax (next to the ventral nerve cord). Arboreal species were not more efficient at capturing prey than were ground-nesting species. A large worker size favors prey capture. Workers from ground- and arboreal-nesting species show several uncommon behavioral traits, each known in different ant genera from different subfamilies: leaping abilities, the use of surface tension strengths to transport liquids, short-range recruitment followed by conflicts between nestmates, the consumption of the prey’s hemolymph, and the retrieval of entire prey or pieces of prey after having cut it up. Yet, we never noted group ambushing. We also confirmed that Pseudomyrmex plant-ants live in a kind of food autarky as they feed only on rewards produced by their host myrmecophyte, or on honeydew produced by the hemipterans they attend and possibly on the fungi they cultivate.

Keywords

Ant genus Pseudomyrmex Arboreal and ground nesting Feeding preferences Myrmecophytism Predation 

Notes

Acknowledgement

We are grateful to Dr Jacques H.C. Delabie and Dr. Philip S. Ward for the identification of the ants, to Dr F. Azémar and A. Assié for their technical assistance, and to Andrea Yockey-Dejean for proofreading the manuscript. Financial support for this study was provided by the Programme Convergence 20072013, Région Guyane from the European Community (BI-Appli, 115/SGAR-DE/2011/052274) and an Investissement dAvenir grant managed by the Agence Nationale de la Recherche (CEBA, ANR-10-LABX-25-01).

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standards

The experiments comply with the current laws of the country in which they were conducted.

References

  1. Beugnon G, Chagné P, Dejean A (2001) Behavioral ecology of the neotropical ant Gigantiops destructor (Hymenoptera, Formicidae, Formicinae). Insect Soc 48:347–351CrossRefGoogle Scholar
  2. Blatrix R, Djiéto-Lordon C, Mondolot L, La Fisca P, Voglmayr H, McKey D (2012) Plant-ants use symbiotic fungi as a food source: new insight into the nutritional ecology of ant-plant interactions. Proc R Soc B 279:3940–3947PubMedCentralPubMedCrossRefGoogle Scholar
  3. Byk J, Del-Claro K (2010) Nectar- and pollen-gathering Cephalotes ants provide no protection against herbivory: a new manipulative experiment to test ant protective capabilities. Acta Ethol 13:33–38CrossRefGoogle Scholar
  4. Byk J, Del-Claro K (2011) Ant-plant interaction in the Neotropical savanna: direct beneficial effects of extrafloral nectar on ant colony fitness. Popul Ecol 53:327–332CrossRefGoogle Scholar
  5. Cerda X, Dejean A (2011) Predation by ants on arthropods and other animals. In: Polidori C (ed) Predation in the Hymenoptera: an evolutionary perspective. Transworld Research Network, Trivandrum, Kerala, pp 39–78Google Scholar
  6. Dejean A (2011) Prey capture behavior in an arboreal African ponerine ant. PLoS ONE 6:e19837PubMedCentralPubMedCrossRefGoogle Scholar
  7. Dejean A, Lachaud J-P (2011) The hunting behavior of the African ponerine ant Pachycondyla pachyderma. Behav Proc 86:169–173CrossRefGoogle Scholar
  8. Dejean A, Suzzoni J-P (1997) Surface tension strengths in the service of a ponerine ant: a new kind of nectar transport. Naturwissenschaften 84:76–79CrossRefGoogle Scholar
  9. Dejean A, Le Breton J, Suzzoni JP, Orivel J, Saux-Moreau C (2005a) Influence of interspecific competition on the recruitment behaviour and liquid food transport in the tramp ant species Pheidole megacephala. Naturwissenschaften 92:324–327PubMedCrossRefGoogle Scholar
  10. Dejean A, Solano PJ, Ayroles J, Corbara B, Orivel J (2005b) Arboreal ants build traps to capture prey. Nature 434:973PubMedCrossRefGoogle Scholar
  11. Dejean A, Corbara B, Orivel J, Leponce M (2007) Rainforest canopy ants: the implications of territoriality and predatory behavior. Funct Ecos Comm 1:105–120Google Scholar
  12. Dejean A, Djiéto-Lordon C, Orivel J (2008) The plant-ant Tetraponera aethiops (Pseudomyrmecinae) protects its host myrmecophyte Barteria fistulosa (Passifloraceae) through aggressiveness and predation. Biol J Linn Soc 93:63–69CrossRefGoogle Scholar
  13. Dejean A, Grangier J, Leroy C, Orivel J (2009) Predation and aggressiveness in host plant protection: a generalization using ants of the genus Azteca. Naturwissenschaften 96:57–63PubMedCrossRefGoogle Scholar
  14. Dejean A, Delabie JHC, Corbara B, Azémar F, Groc S, Orivel J, Leponce M (2012) The ecology and feeding habits of the arboreal trap-jawed ant Daceton armigerum. PLoS ONE 7:e37683PubMedCentralPubMedCrossRefGoogle Scholar
  15. Dejean A, Revel M, Azémar F, Roux O (2013) Altruism during predation in an assassin bug. Naturwissenschaften 100:913–922PubMedCrossRefGoogle Scholar
  16. Djiéto-Lordon C, Orivel J, Dejean A (2001) Predatory behavior of the African ponerine ant Platythyrea modesta (Hymenoptera: Formicidae). Sociobiology 38:303–316Google Scholar
  17. Eilmus S, Heil M (2009) Bacterial associates of arboreal ants and their putative functions in an obligate ant-plant mutualism. Appl Env Microbiol 75:4324–4332CrossRefGoogle Scholar
  18. Fittkau EJ, Klinge H (1973) On biomass and trophic structure of the central Amazonian rain forest ecosystem. Biotropica 5:2–14CrossRefGoogle Scholar
  19. Goheen JR, Palmer TM (2010) Defensive plant-ants stabilize megaherbivore-driven landscape change in an African savanna. Curr Biol 20:1768–1772PubMedCrossRefGoogle Scholar
  20. Gomes L, Desuó IC, Gomes G, Giannotti E (2009) Behavior of Ectatomma brunneum (Formicidae: Ectatomminae) preying on dipterans in field conditions. Sociobiology 53:913–926Google Scholar
  21. González-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Álvarez RM, Heil M (2010) Glucanases and chitinases as causal agents in the protection of acacia extrafloral nectar from infestation by phytopathogens. Plant Physiol 152:1705–1715PubMedCentralPubMedCrossRefGoogle Scholar
  22. Hammer Ø, Harper DAT, Ryan PD (2001) PAST: Paleontological statistics software package for education and data analysis. Palaeont Electron 4:1–9Google Scholar
  23. Heil M, Barajas-Barron A, Orona-Tamayo D, Wiesch N, Svatos A (2013) Partner manipulation stabilizes a horizontally transmitted mutualism. Ecol Lett 17:185–192PubMedCrossRefGoogle Scholar
  24. Hölldobler B (1985) Liquid food transmission and antennation signals in ponerine ants. Israel J Entomol 19:89–99Google Scholar
  25. Hölldobler B, Wilson EO (1990) The Ants. Springer, BerlinCrossRefGoogle Scholar
  26. Kautz S, Lumbsch HT, Ward PS, Heil M (2009a) How to prevent cheating: a digestive specialization ties mutualistic plant-ants to their ant-plant partners. Evolution 63:839–853PubMedCrossRefGoogle Scholar
  27. Kautz S, Pauls SU, Ballhorn DJ, Lumbsch HT, Heil M (2009b) Polygynous supercolonies of the acacia-ant Pseudomyrmex peperi, an inferior colony founder. Mol Ecol 18:5180–5194PubMedCrossRefGoogle Scholar
  28. Koptur S (2005) Nectar as fuel for plant protectors. In: Wackers FL, van Rijn PCJ, Bruin J (eds) Plant-Provided Food and Herbivore–Carnivore Interactions. Cambridge University Press, Cambridge, pp 75–108CrossRefGoogle Scholar
  29. Lachaud J-P, Dejean A (1992) Behaviour of worker of Odontomachus troglodytes (Formicidae, Ponerinae) exploiting a carbohydrate food source. Anal Biol 17:53–61Google Scholar
  30. Lange D, Dáttilo W, Del-Claro K (2013) Influence of extraforal nectary phenology on ant-plant mutualistic networks in a neotropical savanna. Ecol Entomol 38:463–469CrossRefGoogle Scholar
  31. Mony R, Fisher BL, Kenne M, Tindo M, Dejean A (2007) Behavioural ecology of bark-digging ants of the genus Melissotarsus. Funct Ecos Comm 1:121–128Google Scholar
  32. Mony R, Dejean A, Bilong Bilong CF, Kenne M, Rouland-Lefèvre C (2013) Melissotarsus ants are likely able to digest plant polysaccharides. C R Biol 336:500–504PubMedCrossRefGoogle Scholar
  33. Orivel J, Dejean A (2001) Comparative effect of the venoms of ants of the genus Pachycondyla (Hymenoptera: Ponerinae). Toxicon 39:195–201PubMedCrossRefGoogle Scholar
  34. Pike N (2011) Using false discovery rates for multiple comparisons in ecology and evolution. Met Ecol Evol 2:278–282CrossRefGoogle Scholar
  35. Rico-Gray V, Oliveira P (2007) The ecology and evolution of ant-plant interactions. The University of Chicago press, ChicagoCrossRefGoogle Scholar
  36. Russell JA, Moreau CS, Goldman-Huertas B, Fujiwara M, Lohman DJ, Pierce NE (2009) Bacterial gut symbionts are tightly linked with the evolution of herbivory in ants. Proc Natl Acad Sci U S A 106:21236–21241PubMedCentralPubMedCrossRefGoogle Scholar
  37. Sendoya SF, Freitas AVL, Oliveira PS (2009) Egg-laying butterflies distinguish predaceous ants by sight. Amer Nat 174:134–140CrossRefGoogle Scholar
  38. Shenoy M, Radhika V, Borges RM (2012) Composition of extrafloral nectar influences interactions between the myrmecophyte Humboldtia brunonis and its ant associates. J Chem Ecol 38:88–99PubMedCrossRefGoogle Scholar
  39. Styrsky JD, Eubanks MD (2007) Ecological consequences of interactions between ants and honeydew-producing insects. Proc R Soc London B 274:151–164CrossRefGoogle Scholar
  40. Traniello JFA (1982) Population structure and social organization in the primitive ant Amblyopone pallipes (Hymenoptera: Formicidae). Psyche 89:65–80CrossRefGoogle Scholar
  41. van Borm S, Buschinger A, Boomsma JJ, Billen J (2002) Tetraponera ants have gut symbionts related to nitrogen-fixing root-nodule bacteria. Proc R Soc Lond B 269:2023–2027CrossRefGoogle Scholar
  42. Ward PS (1985) The Neartic species of the genus Pseudomyrmex (Hymenoptera: Formicidae). Quaest Entomol 21:209–246Google Scholar
  43. Ward PS (1989) Systematic studies on pseudomyrmecine ants: revision of the Pseudomyrmex oculatus and P. subtilissimus species groups, with taxonomic comments on other species. Quaest Entomol 25:393–468Google Scholar
  44. Ward PS (1993) Systematic studies on Pseudomyrmex acacia-ants (Hymenoptera: Formicidae: Pseudomyrmecinae). J Hym Res 2:117–168Google Scholar
  45. Ward PS (1999) Systematics, biogeography and host plant associations of the Pseudomyrmex viduus group (Hymenoptera: Formicidae), Triplaris- and Tachigali-inhabiting ants. Zool J Linn Soc 126:451–540CrossRefGoogle Scholar
  46. Ward PS, Downie DA (2005) The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big-eyed arboreal ants. Syst Entomol 30:310–335CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Alain Dejean
    • 1
    • 2
  • Nicolas Labrière
    • 1
  • Axel Touchard
    • 1
  • Frédéric Petitclerc
    • 1
  • Olivier Roux
    • 3
  1. 1.CNRS, Écologie des Forêts de Guyane (UMR-CNRS 8172)Kourou cedexFrance
  2. 2.UPS, INP, Laboratoire Écologie Fonctionnelle et Environnement (Ecolab)Université de ToulouseToulouseFrance
  3. 3.IRD, MIVEGEC (IRD 224-CNRS 5290-UM1-UM2) Équipe BEESMontpellier Cedex 5France

Personalised recommendations