Advertisement

Naturwissenschaften

, Volume 101, Issue 1, pp 47–59 | Cite as

The Early Miocene Cape Melville Formation fossil assemblage and the evolution of modern Antarctic marine communities

  • Rowan J. Whittle
  • Fernanda Quaglio
  • Huw J. Griffiths
  • Katrin Linse
  • J. Alistair Crame
Original Paper

Abstract

The fossil community from the Early Miocene Cape Melville Formation (King George Island, Antarctica) does not show the archaic retrograde nature of modern Antarctic marine communities, despite evidence, such as the presence of dropstones, diamictites and striated rocks, that it was deposited in a glacial environment. Unlike modern Antarctic settings, and the upper units of the Eocene La Meseta Formation on Seymour Island, Antarctica, which are 10 million years older, the Cape Melville Formation community is not dominated by sessile suspension feeding ophiuroids, crinoids or brachiopods. Instead, it is dominated by infaunal bivalves, with a significant component of decapods, similar to present day South American settings. It is possible that the archaic retrograde structure of the modern community did not fully evolve until relatively recently, maybe due to factors such as further cooling and isolation of the continent leading to glaciations, which resulted in a loss of shallow shelf habitats.

Keywords

Fossil Antarctica Early Miocene Community structure Decapod Assemblage 

Notes

Acknowledgments

This study is a part of the British Antarctic Survey Polar Science for Planet Earth Programme. It was funded by The Natural Environment Research Council. FQ was partially funded by CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) during the development of this work. We thank R.M. Feldmann and an anonymous reviewer for their helpful and constructive suggestions, and Sven Thatje for his editorial comments. We appreciate the help of Hilary Blagbrough with access to BAS collections and technical support. We would like to thank Dr David Barnes, the participants of JR230 and the crew off the RRS James Clark Ross for assistance with the collection of modern biological data.

Supplementary material

114_2013_1128_MOESM1_ESM.docx (23 kb)
Supplementary Table 1 Records of Recent Homolodromiidae occurrences, with minimum and maximum water depths. (DOCX 23 kb)

References

  1. Allmon WD (1988) Ecology of Recent Turritelline Gastropods (Prosobranchia, Turritellidae): Current Knowledge and Paleontological Implications. Palaios 3:259–284CrossRefGoogle Scholar
  2. Anelli LE, Rocha-Campos AC, Dos Santos PR, Perinotto JD, Quaglio F (2006) Early Miocene bivalves from the Cape Melville Formation, King George Island, West Antarctica. Alcheringa 30:111–132CrossRefGoogle Scholar
  3. Aronson RB, Blake DB (2001) Global Climate Change and the Origin of Modern Benthic Communities in Antarctica. Am Zool 41:27–39CrossRefGoogle Scholar
  4. Aronson RB, Blake DB, Oji T (1997) Retrograde community structure in the late Eocene of Antarctica. Geology 25:903–906CrossRefGoogle Scholar
  5. Aronson RB, Thatje S, Clarke A, Peck LS, Blake DB, Wilga CD, Seibel BA (2007) Climate Change and the Invasibility of the Antarctic Benthos. Annu Rev Ecol Evol Syst 38:129–154CrossRefGoogle Scholar
  6. Aronson RB, Moody RM, Ivany LC, Blake DB, Werner JE, Glass A (2009) Climate Change and Trophic Response of the Antarctic Bottom Fauna. PLoS ONE. doi: 10.1371/journal.pone.0004385 PubMedCentralPubMedGoogle Scholar
  7. Arntz WE, Brey T, Gallardo VA (1994) Antarctic zoobenthos. Oceanogr Mar Biol Ann Rev 32:241–304Google Scholar
  8. Aronson RB, Tahtle S, McClintock JB, Hughes KA (2011) Anthropogenic impacts on marine ecosystems in Antarctica. Ann N Y Acad Sci 1223:82–107PubMedCrossRefGoogle Scholar
  9. Barnes DKA, Clarke A (2011) Antarctic marine biology. Curr Biol 21:R451–R457PubMedCrossRefGoogle Scholar
  10. Beu AG (2009) Before the ice: Biogeography of Antarctic Paleogene molluscan faunas. Palaeogeogr Palaeoclimatol Palaeoecol 284:191–226CrossRefGoogle Scholar
  11. Beu AG, Taviani M (2013) Early Miocene Mollusca from McMurdo Sound, Antarctica (ANDRILL 2A drill core), with a review of Antarctic Oligocene and Neogene Pectinidae (Bivalvia). Palaeontology. doi: 10.1111/pala.12067 Google Scholar
  12. Biernat G, Birkenmajer K, Popiel-Barczyk E (1985) Tertiary brachiopods from the Moby Dick Group of King George Island (South Shetland Islands, Antarctica). Stud Geol Pol 81:7–36Google Scholar
  13. Birkenmajer K (1982) Pre-Quaternary fossiliferous glacio-marine deposits at Cape Melville, King George Island (South Shetland Islands, West Antarctica). Bull Pol Acad Sci-Earth 29:331–340Google Scholar
  14. Birkenmajer K (1984) Geology of the Cape Melville area, King George Island (South Shetland Islands, Antarctica): Pre-Pliocene glaciomarine deposits and their substratum. Stud Geol Pol 79:7–36Google Scholar
  15. Birkenmajer K (1987) Oligocene-Miocene glacio-marine sequences of King George Island (South Shetland Islands), Antarctica. Palaeontol Pol 49:9–36Google Scholar
  16. Birkenmajer K, Łuczkowska E (1987) Foraminiferal evidence for a Lower Miocene age of glaciomarine and related strata, Moby Dick Group, King George Island (South Shetland Islands, Antarctica). Stud Geol Pol 90:81–123Google Scholar
  17. Birkenmajer K, Gaździcki A, Wrona R (1983) Cretaceous and Tertiary fossils in glacio-marine strata at Cape Melville, Antarctica. Nature 303:56–59CrossRefGoogle Scholar
  18. Birkenmajer K, Gaździcki A, Kreuzer H, Müller P (1985) K-Ar dating of the Melville Glaciation (Early Miocene) in West Antarctica. Bull Pol Acad Sci Earth Sci 33:15–23Google Scholar
  19. Bitner MA, Crame JA (2002) Brachiopods from the Lower Miocene of King George Island, West Antarctica. Pol Polar Res 23:75–84Google Scholar
  20. Bouchet P, Kantor YI, Sysoev A, Puillandre N (2011) A new operational classification of the Conoidea (Gastropoda). J Molluscan Stud 77:273–308CrossRefGoogle Scholar
  21. Clarke KR, Warwick RM (2001) Change in marine communities: an approach to statistical analysis and interpretation, 2nd edn. PRIMER-E Ltd, PlymouthGoogle Scholar
  22. Clarke A, Aronson RB, Crame JA, Gili J-M, Blake DB (2004) Evolution and diversity of the benthic fauna of the Southern Ocean continental shelf. Antarct Sci 16:559–568CrossRefGoogle Scholar
  23. Crame JA (2013) Early Cenozoic Differentiation of Polar Marine Faunas. PLOS One 8:e54139. doi: 10.1371/journal.pone.0054139 PubMedCentralPubMedCrossRefGoogle Scholar
  24. Dayton PK (1990) Polar benthos. In: Smith WO Jr (ed) Polar Oceanography, Part B: Chemistry, biology, and geology. Academic Press, San DiegoGoogle Scholar
  25. Dayton PK, Watson D, Palmisano A, Barry JP, Oliver JS, Rivera D (1986) Distribution patterns of benthic standing stock at McMurdo Sound, Antarctica. Polar Biol 6:207–213CrossRefGoogle Scholar
  26. Dingle RV, Lavelle M (1998) Antarctic Peninsular cryosphere: Early Oligocene (c. 30 Ma) initiation and a revised glacial chronology. J Geol Soc Lond 155:433–437CrossRefGoogle Scholar
  27. Dudziak J (1984) Cretaceous calcareous nannoplankton from glaciomarine deposits of the Cape Melville area, King George Island (South Shetland Islands, Antarctica). Stud Geol Pol 79:37–51Google Scholar
  28. Eastman JT (2005) The nature of the diversity of Antarctic fishes. Polar Biol 28:93–107CrossRefGoogle Scholar
  29. Engl W (2012) Shells of Antarctica. Conchbooks, HackenheimGoogle Scholar
  30. Feldmann RM, Wilson MT (1988) Eocene decapod crustaceans from Antarctica. Geol Soc Am Mem 169:465–488Google Scholar
  31. Feldmann RM, Quilty PG (1997) First Pliocene decapod crustacean (Malacostraca: Palinuridae) from the Antarctic. Antarct Sci 9:56–60CrossRefGoogle Scholar
  32. Feldmann RM, Crame JA (1998) The significance of a new nephroid lobster from the Miocene of Antarctica. Palaeontology 41:807–814Google Scholar
  33. Feldmann RM, Schweitzer CE, Marenssi SA (2003) Decapod crustaceans from the Eocene La Meseta Formation, Seymour Island, Antarctica: a model for preservation of decapods. J Geol Soc 160:151–160CrossRefGoogle Scholar
  34. Förster R (1985) Förster R, Gaździcki A, Wrona R (1985) First record of a homolodromiid crab from a Lower Miocene glacio-marine sequence of West Antarctica. Neues Jahrb Geol P M 6:340–348Google Scholar
  35. Förster R, Gaździcki A, Wrona R (1987) Homolodromiid crabs from the Cape Melville Formation (Lower Miocene) of King George Island, West Antarctica. Palaeontol Pol 49:147–161Google Scholar
  36. Frederich M, Sartoris FJ, Pörtner H-O (2001) Distribution patterns of decapods crustaceans in polar areas: a result of magnesium regulation? Polar Biol 24:719–723CrossRefGoogle Scholar
  37. Gili J-M, Arntz WE, Palanques A, Orejas C, Clarke A, Dayton PK, Isla E, Teixidó N, Rossi S, López-González PJ (2006) A unique assemblage of epibenthic sessile suspension feeders with archaic features in the high-Antarctic. Deep-Sea Res 53(Pt II):1029–1052Google Scholar
  38. Gorny M (1999) On the biogeography and ecology of the Southern Ocean decapods fauna. Sci Mar 63:36–382CrossRefGoogle Scholar
  39. Griffiths HJ, Barnes DKA, Linse K (2009) Towards a generalised biogeography of the Southern Ocean benthos. J Biogeogr 36:162–177CrossRefGoogle Scholar
  40. Griffiths HJ, Whittle RJ, Robert SJ, Belchier M, Linse K (2013) Antarctic Crabs: Invasion or Endurance. PLOS ONE 8:e66981. doi: 10.1371/journal.pone.0066981 PubMedCentralPubMedCrossRefGoogle Scholar
  41. Gutt J, Griffiths HJ, Jones CD (2013) Circumpolar overview and spatial heterogeneity of Antarctic macrobenthic communities. Mar Biodivers. doi: 10.1007/s12526-013-0152-9 Google Scholar
  42. Hall S, Thatje S (2011) Temperature-driven biogeography of the deep-sea family Lithodidae (Crustacea: Decapoda: Anomura) in the Southern Ocean. Polar Biol 34:363–370CrossRefGoogle Scholar
  43. Hara U, Crame JA (2004) A new aspidostomatid bryozoans from the Cape Melville Formation (Lower Miocene) of King George Island, West Antarctica. Antarct Sci 16:319–327CrossRefGoogle Scholar
  44. Jacob U, Terpstra S, Brey T (2003) High-Antarctic regular sea urchins – the role of depth and feeding in niche separation. Polar Biol 26:99–104Google Scholar
  45. Jacques FMB, Shi G, Li H, Wang W (2012) An early-middle Eocene Antarctic summer monsoon: evidence of ‘fossil climates’. Gondwana Res. doi: 10.1016/j.gr.2012.08.007Google Scholar
  46. Jesionek-Szymańska W (1987) Echinoids from the Cape Melville Formation (Lower Miocene) of King George Island, West Antarctica. Palaeontol Pol 49:163–168Google Scholar
  47. Jonkers HA (2003) Late Cenozoic – Recent Pectinidae (Mollusca: Bivalvia) of the Southern Ocean and neighbouring regions. Monogr Mar Mollusca 5:1–125Google Scholar
  48. Kantor YI, Taylor JD (1991) Evolution of the toxoglossan feeding mechanism: new information on the use of the radula. J Molluscan Stud 57:129–134CrossRefGoogle Scholar
  49. Karczewski L (1987) Gastropods from the Cape Melville Formation (Lower Miocene) of King George Island, West Antarctica. Palaeontol Pol 49:127–145Google Scholar
  50. Kase T, Ishikawa M (2003) Mystery of naticid predation history solved: Evidence from a “living fossil” species. Geology 31:403–406CrossRefGoogle Scholar
  51. Krause RA Jr, Parsons-Hubbard K, Walker SE (2011) Experimental taphonomy of a decapod crustacean: Long-term data and their implications. Palaeogeogr Palaeoclimatol Palaeoecol 312:350–362CrossRefGoogle Scholar
  52. Linse K, Brandt A (1998) Distribution of epibenthic mollusc on a transect through the Beagle Channel (Southern Chile). J Marine Biol Assoc 78:875–889CrossRefGoogle Scholar
  53. McClintock JB, Angus RA, Mcdonald MR, Amsler CD, Catledge SA, Vohra YK (2009) Rapid dissolution of shells of weakly calcified Antarctic benthic macroorganisms indicates high vulnerability to ocean acidification. Antarct Sci 21:449–456CrossRefGoogle Scholar
  54. Mileikovsky SA (1971) Types of larval development in marine bottom invertebrates, their distribution and ecological significance: a re-evaluation. Mar Biol 10:193–213CrossRefGoogle Scholar
  55. Morton JE (1959) The habits and feeding organs of Dentalium entalis. J Marine Biol Assoc 38:225–238CrossRefGoogle Scholar
  56. Nicol D (1967) Some characteristics of cold-water marine pelecypods. J Paleontol 41:1330–1340Google Scholar
  57. Pugaczewska H (1984) Tertiary Bivalvia and Scaphopoda from glaciomarine deposits at Magda Nunatak, King George Island (South Shetland Islands, Antarctica). Stud Geol Pol 79:53–58Google Scholar
  58. Quaglio F, Whittle RJ, Gaździcki A, Guimarães Simões M (2010) A new fossil Adamussium (Bivalvia: Pectinidae) from Antarctica. Pol Polar Res 31:291–302Google Scholar
  59. Quaglio F, Anelli LE, Nihei S, Whittle RJ, Griffiths H, Linse K, Simões MG, Gaździcki A. Bivalves from the Cape Melville Formation (early Miocene, West Antarctica): new taxa and paleobiogeography (in prep)Google Scholar
  60. Robertson R (1963) Wentletraps (Epitoniidae) feeding on sea anemones and corals. J Molluscan Stud 35:51–63Google Scholar
  61. Roniewicz E, Morycowa E (1985) Fossil Flabellum (Scleractinia) of Antarctica. Acta Palaeontol Pol 30:99–106Google Scholar
  62. Roniewicz E, Morycowa E (1987) Development and variability of Tertiary Flabellum rariseptatum (Scleractinia), King George Island, West Antarctica. Palaeontol Pol 49:83–103Google Scholar
  63. Schweitzer CE, Nyborg TG, Feldmann RM, Ross LM (2004) Homolidae De Haan, 1839 and Homolodromiidae Alcock, 1900 (Crustacea: Decapoda: Brachyura) from the Pacific Northwest of North America and a reassessment of their fossil records. J Paleontol 78:133–149CrossRefGoogle Scholar
  64. Schweitzer CE, Feldmann RM (2011) Revision of some fossil podotrematous Brachyura (Homolodromiidae; Longodromitidae; Torynommidae). N Jb Geol Paläont (Abh) 260:237–256CrossRefGoogle Scholar
  65. Smale DA, Barnes DKA, Fraser KPP, Peck LS (2008) Benthic community response to iceberg scouring at an intensely disturbed shallow water site at Adelaide Island, Antarctica. Mar Ecol Prog Ser 355:85–94CrossRefGoogle Scholar
  66. Staff GM, Stanton RJ Jr, Powell EN, Cummins H (1986) Time-averaging, taphonomy, and their impact on paleocommunity reconstruction: Death assemblages in Texas bays. Geol Soc Am Bull 97:428–443CrossRefGoogle Scholar
  67. Stempien JA (2005) Brachyuran Taphonomy in a Modern Tidal-Flat Environment: Preservation Potential and Anatomical Bias. Palaios 20:400–410CrossRefGoogle Scholar
  68. Szaniawski H, Wrona R (1987) Polychaete jaws from the Cape Melville Formation (Lower Miocene) of King George Island, West Antarctica. Palaeontol Pol 49:105–125Google Scholar
  69. Thatje S, Mutschke E (1999) Distribution of abundance, biomass, production and productivity of macrozoobenthos in the sub-Antarctic Magellan Province (South America). Polar Biol 22:31–37CrossRefGoogle Scholar
  70. Thatje S, Schnack-Schiel S, Arntz WE (2003) Developmental trade-offs in Subantarctic meroplankton communities and the enigma of low decapods diversity on high southern latitudes. Mar Ecol Prog Ser 260:195–207CrossRefGoogle Scholar
  71. Thatje S, Arntz WE (2004) Antarctic reptant decapods: more than a myth? Polar Biol 27:195–210CrossRefGoogle Scholar
  72. Thorson G (1936) The larval development, growth and metabolism of Arctic marine bottom invertebrates compared with those of other seas. Medd Gron 100:1–155Google Scholar
  73. Thorson G (1950) Reproductive and larval ecology of marine bottom invertebrates. Biol Rev 25:1–45CrossRefGoogle Scholar
  74. Troedson AL, Riding JB (2002) Upper Oligocene to Lowermost Miocene strata of King George Island, South Shetland Islands, Antarctica: stratigraphy, facies analysis, and implications for the glacial history of the Antarctic Peninsula. J Sediment Res 72:510–523CrossRefGoogle Scholar
  75. Uchman A, Gaździcki A (2010) Phymatoderma melvillensis isp. nov. and other trace fossils from the Cape Melville Formation (Lower Miocene) of King George Island, Antarctica. Pol Polar Res 31:83–99CrossRefGoogle Scholar
  76. Vermeij GJ (1978) Biogeography and adaptation: patterns of marine life. Harvard University Presss, CambridgeGoogle Scholar
  77. Vermeij GJ (1987) Evolution and escalation: an ecological history of life. Princeton University Press, Princeton, New JerseyGoogle Scholar
  78. Walker BJ, Miller MF, Bowser SS, Furbish DJ, Gualda GAR (2013) Dissolution of ophiuroid ossicles on the shallow Antarctic shelf: implications for the fossil record and ocean acidification. Palaios 28:317–332CrossRefGoogle Scholar
  79. Whittle RJ, Linse K, Griffiths HJ (2011) The fossil record of Limopsis (Bivalvia: Limopsidae) in Antarctica and the southern high latitudes. Palaeontology 54:935–952CrossRefGoogle Scholar
  80. Whittle RJ, Quaglio F, Crame JA, Linse K (2012) The bivalve assemblage of the Early Miocene Cape Melville Formation (King George Island, Antarctica) with revision of the Nuculidae. Antarct Sci 24:625–633CrossRefGoogle Scholar
  81. Wittmann AC, Pörtner HO, Sartoris (2010) Ion regulatory capacity and the biogeography of Crustacea at high southern latitudes. Polar Biol 33:919–928CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rowan J. Whittle
    • 1
  • Fernanda Quaglio
    • 2
  • Huw J. Griffiths
    • 1
  • Katrin Linse
    • 1
  • J. Alistair Crame
    • 1
  1. 1.British Antarctic Survey, High CrossCambridgeUK
  2. 2.Instituto de GeociênciasUniversidade de São PauloSão PauloBrazil

Personalised recommendations