Advertisement

Naturwissenschaften

, Volume 100, Issue 12, pp 1125–1136 | Cite as

Tolerating an infection: an indirect benefit of co-founding queen associations in the ant Lasius niger

  • Christopher D. Pull
  • William O. H. Hughes
  • Mark J. F. Brown
Original Paper

Abstract

Pathogens exert a strong selection pressure on organisms to evolve effective immune defences. In addition to individual immunity, social organisms can act cooperatively to produce collective defences. In many ant species, queens have the option to found a colony alone or in groups with other, often unrelated, conspecifics. These associations are transient, usually lasting only as long as each queen benefits from the presence of others. In fact, once the first workers emerge, queens fight to the death for dominance. One potential advantage of co-founding may be that queens benefit from collective disease defences, such as mutual grooming, that act against common soil pathogens. We test this hypothesis by exposing single and co-founding queens to a fungal parasite, in order to assess whether queens in co-founding associations have improved survival. Surprisingly, co-foundresses exposed to the entomopathogenic fungus Metarhizium did not engage in cooperative disease defences, and consequently, we find no direct benefit of multiple queens on survival. However, an indirect benefit was observed, with parasite-exposed queens producing more brood when they co-founded, than when they were alone. We suggest this is due to a trade-off between reproduction and immunity. Additionally, we report an extraordinary ability of the queens to tolerate an infection for long periods after parasite exposure. Our study suggests that there are no social immunity benefits for co-founding ant queens, but that in parasite-rich environments, the presence of additional queens may nevertheless improve the chances of colony founding success.

Keywords

Lasius niger Life-history trade-offs Metarhizium Allogrooming Social immunity Pleometrosis 

Notes

Acknowledgments

We thank Catherine Jones and Matthias Fürst for assistance in maintaining ant colonies and help with collecting data, Miriam Stock for helpful comments on an earlier draft of the manuscript, Bill Wcislo and four anonymous reviewers for comments which greatly improved the manuscript, Meghan L. Vyleta for fungal characterisation and Line V. Ugelvig for advice on statistical analysis.

Supplementary material

114_2013_1115_MOESM1_ESM.pdf (218 kb)
Online Resource 1 (PDF 217 kb)

References

  1. Adams ES, Tschinkel WR (1995) Effects of foundress number on brood raids and queen survival in the fire ant Solenopsis invicta. Behav Ecol Sociobiol 37:233–242. doi: 10.1007/BF00177402 CrossRefGoogle Scholar
  2. Ahmed A, Baggott S, Maingon R, Hurd H (2002) The costs of mounting an immune response are reflected in the reproductive fitness of the mosquito Anopheles gambiae. Oikos 3:371–377. doi: 10.1034/j.1600-0706.2002.970307.x CrossRefGoogle Scholar
  3. Alexander RD (1974) The evolution of social behavior. Annu Rev Ecol Evol Syst 5:325–383CrossRefGoogle Scholar
  4. Altizer S, Nunn C, Thrall P (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu Rev Ecol Evol Syst 34:517–547. doi: 10.1146/annurev.ecolsys.34.030102.151725 CrossRefGoogle Scholar
  5. Aron S, Steinhauer N, Fournier D (2009) Influence of queen phenotype, investment and maternity apportionment on the outcome of fights in cooperative foundations of the ant Lasius niger. Anim Behav 77:1067–1074. doi: 10.1016/j.anbehav.2009.01.009 CrossRefGoogle Scholar
  6. Baer B, Armitage SA, Boomsma JJ (2006) Sperm storage induces an immunity cost in ants. Nature 441:872–875. doi: 10.1038/nature04698 PubMedCrossRefGoogle Scholar
  7. Bernasconi G, Strassmann JE (1999) Cooperation among unrelated individuals: the ant foundress case. Trends Ecol Evol 14:477–482. doi: 10.1016/S0169-5347(99)01722-X PubMedCrossRefGoogle Scholar
  8. Bischoff JF, Rehner SA, Humber RA (2009) A multilocus phylogeny of the Metarhizium anisopliae lineage. Mycologia 101:512–530. doi: 10.3852/07-202 PubMedCrossRefGoogle Scholar
  9. Boomsma JJ, Leusink A (1981) Weather conditions during nuptial flights of four European ant species. Oecologia 50:236–241. doi: 10.1007/BF00348045 CrossRefGoogle Scholar
  10. Boomsma JJ, Van Der Have T (1998) Queen mating and paternity variation in the ant Lasius niger. Mol Ecol 7:1709–1718. doi: 10.1046/j.1365-294x.1998.00504.x CrossRefGoogle Scholar
  11. Boomsma JJ, Schmid-Hempel P, Hughes WOH (2005) Life histories and parasite pressure across the major groups of social insects. In: Fellowes MDE, Holloway G, Rolff J (eds) Insect evolutionary ecology, 1st edn. CABI Publishing, Wallingford, pp 139–176Google Scholar
  12. Boots M, Begon M (1993) Trade-offs with resistance to a granulosis virus in the Indian meal moth, examined by a laboratory evolution experiment. Funct Ecol 7:528–534CrossRefGoogle Scholar
  13. Bourke AFG, Franks NR (1995) Social evolution in ants. Princeton University Press, Princeton, pp 258–298Google Scholar
  14. Brown M (2000) From the laboratory to the field: the advantage of pleometrotic colony founding. Trends Ecol Evol 15:116. doi: 10.1016/S0169-5347(99)01809-1 PubMedCrossRefGoogle Scholar
  15. Calleri DV II, Rosengaus RB, Traniello JFA (2005) Disease and colony foundation in the dampwood termite Zootermopsis angusticollis: the survival advantage of nestmate pairs. Naturwissenschaften 92:300–304. doi: 10.1007/s00114-005-0630-4 PubMedCrossRefGoogle Scholar
  16. Calleri DV II, Rosengaus RB, Traniello JFA (2007) Immunity and reproduction during colony foundation in the dampwood termite, Zootermopsis angusticollis. Physiol Entomol 32:136–142. doi: 10.1111/j.1365-3032.2007.00559.x CrossRefGoogle Scholar
  17. Castella G, Christe P, Chapuisat M (2009) Mating triggers dynamic immune regulations in wood ant queens. J Evol Biol 22:564–570. doi: 10.1111/j.1420-9101.2008.01664.x PubMedCrossRefGoogle Scholar
  18. Chouvenc T, Su N-Y, Kenneth Grace J (2011) Fifty years of attempted biological control of termites – analysis of a failure. Biol Control 59:69–82. doi: 10.1016/j.biocontrol.2011.06.015 CrossRefGoogle Scholar
  19. Copeland EK, Fedorka KM (2012) The influence of male age and simulated pathogenic infection on producing a dishonest sexual signal. Proc R Soc B. doi: 10.1098/rspb.2012.1914 PubMedGoogle Scholar
  20. Core Team R (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  21. Cremer S, Armitage SAO, Schmid-Hempel P (2007) Social Immunity. Curr Biol 17:693–702. doi: 10.1016/j.cub.2007.06.008 CrossRefGoogle Scholar
  22. Deacon JW (2006) Fungal biology. Blackwell Publishing, Malden, pp 309–313Google Scholar
  23. Fellowes MDE, Kraaijeveld AR, Godfray HCJ (1998) Trade-off associated with selection for increased ability to resist parasitoid attack in Drosophila melanogaster. Proc R Soc B 265:1553–1558PubMedCrossRefGoogle Scholar
  24. Festa-Bianchet M (1989) Individual differences, parasites, and the costs of reproduction for bighorn ewes (Ovis canadensis). J Anim Ecol 58:785–795CrossRefGoogle Scholar
  25. Fjerdingstad E, Gertsch PJ, Keller L (2003) The relationship between multiple mating by queens, withincolony genetic variability and fitness in the ant Lasius niger. J Evol Biol 16:844–853. doi: 10.1046/j.1420-9101.2003.00589.x PubMedCrossRefGoogle Scholar
  26. Fowler HG, Pereira da Silva V, Forti LC, Saes NB (1986) Population dynamics of leaf-cutting ants: a brief review. In: Lofgren CS, Vander Meer RK (eds) Ants and leaf cutting ants: biology and management. Westview Press, Boulder, pp 123–145Google Scholar
  27. Freeland WJ (1976) Pathogens and the evolution of primate sociality. Biotropica 8:12–24CrossRefGoogle Scholar
  28. Graystock P, Hughes WOH (2011) Disease resistance in a weaver ant, Polyrhachis dives, and the role of antibiotic-producing glands. Behav Ecol Sociobiol 65:2319–2327. doi: 10.1007/s00265-011-1242-y CrossRefGoogle Scholar
  29. Gustafsson L, Nordling D, Andersson MS, Sheldon BC, Qvarnström A (1994) Infectious diseases, reproductive effort and the cost of reproduction in birds. Philos Trans R Soc Lond B 346:323–331. doi: 10.1098/rstb.1994.0149 CrossRefGoogle Scholar
  30. Gwynn DM, Callaghan A, Gorham J, Walters KFA, Fellowes, MDE (2005) Resistance is costly: trade-offs between immunity, fecundity and survival in the pea aphid. Proc R Soc B 1803–1808. doi: 10.1098/rspb.2005.3089
  31. Hamilton C, Lejeune BT, Rosengaus RB (2011) Trophallaxis and prophylaxis: social immunity in the carpenter ant Camponotus pennsylvanicus. Biol Lett 7:89–92. doi: 10.1098/rsbl.2010.0466 PubMedCentralPubMedCrossRefGoogle Scholar
  32. Hartke TR (2010) Breeding strategies and the reproductive ecology of Nasutitermes corniger. Dissertation, Northeastern UniversityGoogle Scholar
  33. Hartke TR, Rosengaus RB (2013) Costs of pleometrosis in a polygamous termite. Proc R Soc B 280:20122563. doi: 10.1098/rspb.2012.2563 PubMedCrossRefGoogle Scholar
  34. Hölldobler B, Wilson EO (1990) The ants. Harvard University Press, CambridgeCrossRefGoogle Scholar
  35. Holman L, Dreier S, D'Ettorre P (2010) Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc R Soc B 277:2007–2015. doi: 10.1098/rspb.2009.2311 PubMedCrossRefGoogle Scholar
  36. Hughes WOH, Eilenberg J, Boomsma JJ (2002) Trade-offs in group living: transmission and disease resistance in leaf-cutting ants. Proc R Soc B 269:1811–1819. doi: 10.1098/rspb.2002.2113 PubMedCrossRefGoogle Scholar
  37. Hughes WOH, Thomsen L, Eilenberg J, Boomsma JJ (2004) Diversity of entomopathogenic fungi near leaf-cutting ant nests in a neotropical forest, with particular reference to Metarhizium anisopliae var. anisopliae. J Invertebr Pathol 85:46–53. doi: 10.1016/j.jip.2003.12.005 PubMedCrossRefGoogle Scholar
  38. Hughes WOH, Bot ANM, Boomsma JJ (2010) Caste-specific expression of genetic variation in the size of antibiotic-producing glands of leaf-cutting ants. Proc R Soc B 277:609–615. doi: 10.1098/rspb.2009.1415 PubMedCrossRefGoogle Scholar
  39. Janet C (1907) Anatomie du corselet et histolyse des muscles vibrateurs, aprés le vol nuptial chez la reine de la fourmi (Lasius niger). Ducourtieux & Gout, LimogesGoogle Scholar
  40. Keller S, Kessler P, Schweizer C (2003) Distribution of insect pathogenic soil fungi in Switzerland with special reference to Beauveria brongniartii and Metharhizium anisopliae. BioControl 48:307–319. doi: 10.1023/A:1023646207455 CrossRefGoogle Scholar
  41. Konrad M, Vyleta ML, Theis FJ, Stock M, Tragust S, Klatt M, Drescher V, Marr C, Ugelvig LV, Cremer S (2012) Social transfer of pathogenic fungus promotes active immunisation in ant colonies. PLoS Biol 10:e1001300. doi: 10.1371/journal.pbio.1001300 PubMedCentralPubMedCrossRefGoogle Scholar
  42. Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, New York, pp 51–52Google Scholar
  43. Lacey LA, Brooks WM (1997) Initial handling and diagnosis of diseased invertebrates. In: Lacey LA (ed) Manual of techniques in invertebrate pathology. Academic Press, San Diego, p 5Google Scholar
  44. Mersch DP, Crespsi A, Keller L (2013) Tracking individuals shows spatial fidelity is a key regulator of ant social organization. Science. doi: 10.1126/science.1234316 PubMedGoogle Scholar
  45. Mills M (2011) Introducing survival and event history analysis. SAGE Publications, LondonGoogle Scholar
  46. Møller A, Dufva R, Allander K (1993) Parasites and the evolution of host social behavior. In: Slater PJB, Rosenblatt, JS, Snowdon, CT, Milinksi, M (eds) Advances in the study of behavior. Academic Press, San Diego, 22:65–122Google Scholar
  47. Nonacs P (1990) Size and kinship affect success of co-founding Lasius pallitarsis queens. Psyche 97:217–228. doi: 10.1155/1990/21379 CrossRefGoogle Scholar
  48. Nunn CL, Altizer S (2006) Infectious diseases in primates: behavior, ecology and evolution. Oxford University Press, New York, pp 150–155CrossRefGoogle Scholar
  49. Oi DH, Pereira RM (1993) Ant behavior and microbial pathogens (Hymenoptera: Formicidae). Fla Entomol 76:63–74CrossRefGoogle Scholar
  50. Okuno M, Tsuji K, Sato H, Fujisaki K (2011) Plasticity of grooming behavior against entomopathogenic fungus Metarhizium anisopliae in the ant Lasius japonicus. J Ethol 30:23–27. doi: 10.1007/s10164-011-0285-x CrossRefGoogle Scholar
  51. Reber A, Chapuisat M (2012) Diversity, prevalence and virulence of fungal entomopathogens in colonies of the ant Formica selysi. Insect Soc 59:231–239. doi: 10.1007/s00040-011-0209-3 CrossRefGoogle Scholar
  52. Reber A, Meunier J, Chapuisat M (2010) Flexible colony-founding strategies in a socially polymorphic ant. Anim Behav 79:467–472. doi: 10.1016/j.anbehav.2009.11.030 CrossRefGoogle Scholar
  53. Reber A, Purcell J, Buechel SD, Buri P, Chapuisat M (2011) The expression and impact of antifungal grooming in ants. J Evol Biol 24:954–964. doi: 10.1111/j.1420-9101.2011.02230.x PubMedCrossRefGoogle Scholar
  54. Rissing S, Pollock G, Higgins M, Hagen RH, Roan Smith D (1989) Foraging specialization without relatedness or dominance among co-founding ant queens. Nature 338:420–422. doi: 10.1038/338420a0 CrossRefGoogle Scholar
  55. Roberts DW, St Leger RJ (2004) Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 54:1–70PubMedCrossRefGoogle Scholar
  56. Rosengaus RB, Maxmen AB, Coates LE, Traniello JFA (1998) Disease resistance: a benefit of sociality in the dampwood termite Zootenmopsis angusticollis (Isoptera: Termopsidae). Behav Ecol Sociobiol 44:125–134. doi: 10.1007/s002650050523 CrossRefGoogle Scholar
  57. Sadd BM, Schmid-Hempel P (2006) Insect immunity shows specificity in protection upon secondary pathogen exposure. Curr Biol 16:1206–1210. doi: 10.1016/j.cub.2006.04.047 PubMedCrossRefGoogle Scholar
  58. Schmid-Hempel P (1998) Parasites in social insects. Princeton University Press, PrincetonGoogle Scholar
  59. Schmid-Hempel P (2011) Evolutionary parasitology: the integrated study of infections, immunology, ecology, and genetics. Oxford University Press, New YorkGoogle Scholar
  60. Schmid-Hempel P, Schmid-Hempel R (1993) Transmission of a pathogen in Bombus terrestris, with a note on division of labour in social insects. Behav Ecol Sociobiol 33:319–327. doi: 10.1007/BF00172930 CrossRefGoogle Scholar
  61. Siva-Jothy MT, Tsubaki Y, Hooper RE (1998) Decreased immune response as a proximate cost of copulation and oviposition in a damselfly. Physiol Entomol 23:274–277. doi: 10.1046/j.1365-3032.1998.233090.x CrossRefGoogle Scholar
  62. Sommer K, Hölldobler B (1995) Colony founding by queen association and determinants of reduction in queen number in the ant Lasius niger. Anim Behav 50:287–294. doi: 10.1006/anbe.1995.0244 CrossRefGoogle Scholar
  63. Therneau T (2013) A package for survival analysis in S. R package version 2.37-4Google Scholar
  64. Tragust S, Mitteregger B, Barone V, Konrad M, Ugelvig LV, Cremer S (2013) Ants disinfect fungus-exposed brood by oral uptake and spread of their poison. Curr Biol 23:76–82. doi: 10.1016/j.cub.2012.11.034 PubMedCrossRefGoogle Scholar
  65. Traniello JFA, Rosengaus RB, Keely S (2002) The development of immunity in a social insect: evidence for the group facilitation of disease resistance. Proc Natl Acad Sci U S A 99:6838. doi: 10.1073/pnas.102176599 PubMedCentralPubMedCrossRefGoogle Scholar
  66. Tschinkel WR, Howard DF (1983) Colony founding by pleometrosis in the fire ant, Solenopsis invicta. Behav Ecol Sociobiol 12:103–113. doi: 10.1007/BF00343200 CrossRefGoogle Scholar
  67. Ugelvig LV, Cremer S (2007) Social prophylaxis: group interaction promotes collective immunity in ant colonies. Curr Biol 17:1967–1971. doi: 10.1016/j.cub.2007.10.029 PubMedCrossRefGoogle Scholar
  68. Ugelvig LV, Kronauer DJC, Schrempf A, Heinze J, Cremer S (2010) Rapid anti-pathogen response in ant societies relies on high genetic diversity. Proc R Soc B 277:2821–2828. doi: 10.1098/rspb.2010.0644 PubMedCrossRefGoogle Scholar
  69. Ulrich Y, Sadd BM, Schmid-Hempel P (2011) Strain filtering and transmission of a mixed infection in a social insect. J Evol Biol 24:354–362. doi: 10.1111/j.1420-9101.2010.02172.x PubMedCrossRefGoogle Scholar
  70. Walker TN, Hughes WOH (2009) Adaptive social immunity in leaf-cutting ants. Biol Lett 5:446–448. doi: 10.1098/rsbl.2009.0107 PubMedCentralPubMedCrossRefGoogle Scholar
  71. Waloff N (1957) The effect of the number of queens of the ant Lasius flavus (Fab.) (Hym., Formicidae) on their survival and on the rate of development of the first brood. Insect Soc 4:391–408. doi: 10.1007/BF02224159 CrossRefGoogle Scholar
  72. Warnes GR et al. (2012) gmodels: various R programming tools for model fitting. R package version 2.15.3Google Scholar
  73. Wheeler WM (1910) Ants: their structure, development and behavior. Columbia University Press, New York, pp 185–186Google Scholar
  74. Wilson EO (1955) A monographic revision of the ant genus Lasius. Bull Mus Comp Zool 113:1–201Google Scholar
  75. Wilson EO (1971) The insect societies. The Belknap Press of Harvard Univeristy Press, CambridgesGoogle Scholar
  76. Wilson-Rich N, Spivak M, Fefferman NH, Starks PT (2009) Genetic, individual, and group facilitation of disease resistance in insect societies. Annu Rev Entomol 54:405–423. doi: 10.1146/annurev.ento.53.103106.093301 PubMedCrossRefGoogle Scholar
  77. Yan G, Severson D, Christensen B (1997) Costs and benefits of mosquito refractoriness to malaria parasites: implications for genetic variability of mosquitoes and genetic control of malaria. Evolution 51:441–450CrossRefGoogle Scholar
  78. Yanagawa A, Shimizu S (2007) Resistance of the termite, Coptotermes formosanus Shiraki to Metarhizium anisopliae due to grooming. BioControl 52:75–85. doi: 10.1007/s10526-006-9020-x CrossRefGoogle Scholar
  79. Yek SH, Nash DR, Jensen AB, Boomsma JJ (2012) Regulation and specificity of antifungal metapleural gland secretion in leaf-cutting ants. Proc R Soc B 279:4215–4222. doi: 10.1098/rspb.2012.1458 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Christopher D. Pull
    • 1
    • 2
  • William O. H. Hughes
    • 3
  • Mark J. F. Brown
    • 1
  1. 1.Royal Holloway University of LondonEghamUK
  2. 2.IST Austria (Institute of Science and Technology Austria)KlosterneuburgAustria
  3. 3.School of Life SciencesUniversity of SussexBrightonUK

Personalised recommendations