Naturwissenschaften

, Volume 100, Issue 9, pp 811–825 | Cite as

Kodymirus and the case for convergence of raptorial appendages in Cambrian arthropods

  • James C. Lamsdell
  • Martin Stein
  • Paul A. Selden
Original Paper

Abstract

Kodymirus vagans Chlupáč and Havlíček in Sb Geol Ved Paleontol 6:7–20, 1965 is redescribed as an aglaspidid-like arthropod bearing a single pair of enlarged raptorial appendages, which are shown to be the second cephalic appendage. A number of early Palaeozoic arthropods, recognized from predominantly Cambrian Konservat-Lagerstätten, are known to have borne single pairs of large raptorial appendages. They are well established for the iconic yet problematic anomalocarids, the common megacheirans, and the ubiquitous bivalved Isoxys. Further taxa, such as fuxianhuiids and Branchiocaris, have been reported to have single pairs of specialized cephalic appendages, i.e., appendages differentiated from a largely homonomous limbs series, members of which act in metachronal motion. The homology of these raptorial appendages across these Cambrian arthropods has often been assumed, despite differences in morphology. Thus, anomalocaridids, for instance, have long multiarticulate “frontal appendages” consisting of many articles bearing an armature of paired serial spines, while megacheirans and Isoxys have short “great appendages” consisting of few articles with well-developed endites or elongate fingers. Homology of these appendages would require them to belong to the same cephalic segment. We argue based on morphological evidence that, to the contrary, the raptorial appendages of some of these taxa can be shown to belong to different cephalic segments and are the result of convergence in life habits. K. vagans is yet another important example for this, representing an instance for this morphology from a marginal marine environment.

Keywords

Cambrian Arthropod Raptorial appendages Convergence Bohemia Paseky Shale 

Notes

Acknowledgments

We thank Josef Pšenička (West Bohemian Museum, Pilsen), Martina Korandová (District Museum, Rokycany), and Ivana Hradská (West Bohemian Museum, Pilsen) for facilitating access to the material. Allison C. Daley (Natural History Museum, London) and Joachim Haug (University of Greifswald) provided photographs. Brigitte Schoenemann, David Legg, and two anonymous referees provided comments on the manuscript. Financial support from the Carlsberg Foundation to MS is gratefully acknowledged.

Supplementary material

114_2013_1081_MOESM1_ESM.nex (95 kb)
ESM 1(NEX 94 kb)
114_2013_1081_MOESM2_ESM.pdf (60.8 mb)
ESM 2(PDF 62236 kb)

References

  1. Bergström J (1968) Eolimulus, a Lower Cambrian xiphosurid from Sweden. Geol Fören Stockh Förh 90:489–503CrossRefGoogle Scholar
  2. Bergström J (1979) Morphology of fossil arthropods as a guide to phylogenetic relationships. In: Gupta AP (ed) Arthropod phylogeny. Van Nostrand Reinhold, New York, pp. 3–56Google Scholar
  3. Bousefield EL (1995) A contribution to the natural classification or Lower and Middle Cambrian arthropods: food-gathering and feeding mechanisms. Amphipacifica 2:3–33Google Scholar
  4. Briggs DEG, Collins D (1988) A Middle Cambrian chelicerate from Mount Stephen, British Columbia. Palaeontology 31:779–798Google Scholar
  5. Briggs DEG, Lieberman BS, Hendricks JR, Halgedahl SL, Jarrard RD (2008) Middle Cambrian arthropods from Utah. J Paleontology 82:238–254CrossRefGoogle Scholar
  6. Bruton DL, Whittington HB (1983) Emeraldella and Leanchoilia, two arthropods from the Burgess Shale, Middle Cambrian, British Columbia. Philosophical Transactions of the Royal Society of London B. Philos Trans R Soc Lond B Biol Sci 300:553–582CrossRefGoogle Scholar
  7. Budd GE (2002) A palaeontological solution to the arthropod head problem. Nature 417:271–275PubMedCrossRefGoogle Scholar
  8. Budd GE (2008) Head structure in upper stem-group euarthropods. Palaeontology 51:561–573CrossRefGoogle Scholar
  9. Chen J-Y (2009) The sudden appearance of diverse animal body plans during the Cambrian explosion. Int J Dev Biol 53:733–751PubMedCrossRefGoogle Scholar
  10. Chen J-Y, Waloszek D, Maas A (2004) A new ‘great appendage’ arthropod from the Lower Cambrian of China and homology of chelicerate chelicerae and raptorial antero-ventral appendages. Lethaia 37:3–20Google Scholar
  11. Chlupáč I (1995) Lower Cambrian arthropods from the Paseky Shale (Barrandian area, Czech Republic). J Czech Geol Soc 40:9–36Google Scholar
  12. Chlupáč I, Havlíček I (1965) Kodymirus n. g., a new aglaspid merostome of the Cambrian of Bohemia. Sb Geol Věd Paleontol 6:7–20Google Scholar
  13. Cisne JL (1975) Anatomy of Triarthrus and the relationships of the Trilobita. Fossils Strata 4:45–63Google Scholar
  14. Conway Morris S, Caron J-B (2012) Pikaia garcilis Walcott, a stem-group chordate from the Middle Cambrian of British Columbia. Biol Rev 87:480–512CrossRefGoogle Scholar
  15. Daley AC, Bergström J (2012) The oral cone of Anomalocaris is not a classic “peytoia”. Naturwissenschaften 99:501–504PubMedCrossRefGoogle Scholar
  16. Daley AC, Budd GE (2010) New anomalocaridid appendages from the Burgess Shale, Canada. Palaeontology 53:721–738CrossRefGoogle Scholar
  17. Daley AC, Budd GE, Caron J-B, Edgecombe GD, Collins D (2009) The Burgess Shale anomalocaridid Hurdia and its significance for early euarthropod evolution. Science 323:1597–1600PubMedCrossRefGoogle Scholar
  18. Edgecombe GD (2010) Arthropod phylogeny: an overview from the perspectives of morphology, molecular data and the fossil record. Arthropod Struct Dev 39:74–87PubMedCrossRefGoogle Scholar
  19. Edgecombe GD, García-Bellido DC, Paterson JR (2011) A new leanchoiliid megacheiran arthropod from the lower Cambrian Emu Bay Shale, South Australia. Acta Palaeontol Pol 56:385–400CrossRefGoogle Scholar
  20. Edgecombe GD, Legg DA (2013) The Arthropod Fossil Record. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution—molecules, development, morphology. Springer, Berlin, pp 393–415CrossRefGoogle Scholar
  21. Eriksson BJ, Tait NN, Budd GE, Janssen R, Akam M (2010) Head patterning and Hox gene expression in an onychophoran and its implications for the arthropod head problem. Dev Genes Evol 220:117–122PubMedCrossRefGoogle Scholar
  22. Fatka O, Konzalová M (1995) Microfossils of the Paseky Shale (Lower Cambrian, Czech Republic). J Czech Geol Soc 40:55–66Google Scholar
  23. Fatka O, Kordule V, Szabad M (2004) Stratigraphical distribution of Cambrian fossils in the Příbram-Jince Basin (Barrandian area, Czech Republic). Senckenb Lethaea 84:367–381CrossRefGoogle Scholar
  24. Fatka O, Mergl M (2009) The ‘microcontinent’ Perunica: status and story 15 years after conception. In: Bassett MG (ed) Early Palaeozoic Peri-Gondwana Terranes: new insights from tectonics and biogeography, vol Special Publications 325. Geological Society, London, pp 65–101Google Scholar
  25. Frase T, Richter S (2013) The fate of the onychophoran antenna. Dev Genes Evol. doi:10.1007/s00427-013-0436-x PubMedGoogle Scholar
  26. Fu D-J, Xhang X-L, Shu D-G (2011) Soft anatomy of the Early Cambrian arthropod Isoxys curvirostratus from the Chengjiang biota of South China with a discussion on the origination of great appendages. Acta Palaeontol Pol 56:843–852CrossRefGoogle Scholar
  27. García-Bellido DC, Vannier J, Collins D (2009) Soft-part preservation in two species of the arthropod Isoxys from the middle Cambrian Burgess Shale of British Columbia, Canada. Acta Palaeontol Pol 54:699–712CrossRefGoogle Scholar
  28. Goloboff PA, Farris JS, Nixon KC (2008) TNT, a free program for phylogenetic analysis. Cladistics 24:774–786CrossRefGoogle Scholar
  29. Haug JT, Briggs DEG, Haug C (2012a) Morphology and function in the Cambrian Burgess Shale megacheiran arthropod Leanchoilia superlata and the application of a descriptive matrix. BMC Evol Biol 12(162):1–20Google Scholar
  30. Haug JT, Maas A, Haug C, Waloszek D (2011) Sarotrocercus oblitus—small arthropod with great impact on the understanding of arthropod evolution? Bull Geosci 86:725–736CrossRefGoogle Scholar
  31. Haug JT, Waloszek D, Maas A, Liu Y, Haug C (2012b) Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology 55:369–399CrossRefGoogle Scholar
  32. Hesselbo SP (1992) Aglaspidida (Arthropoda) from the Upper Cambrian of Wisconsin. J Paleontology 66:885–923Google Scholar
  33. Holmer LE, Caron J-B (2006) A spinose stem group brachiopod with pedicle from the Middle Cambrian Burgess Shale. Acta Zool 87:273–290CrossRefGoogle Scholar
  34. Hou X, Bergström J, Ahlberg P (1995) Anomalocaris and other large animals in the Lower Cambrian Chengjiang fauna of southwest China. GFF 117:163–183CrossRefGoogle Scholar
  35. Hou X, Bergström J (1997) Arthropods of the Lower Cambrian Chengjiang Fauna, southwest China. Fossils Strata 45:1–116Google Scholar
  36. Ivantsov AY, Zhuravlev AY, Leguta AV, Krassilov VA, Melnikova LM, Ushatinskaya GT (2005) Palaeoecology of the Early Cambrian Sinsk biota from the Siberian Platform. Palaeogeogr Palaeoclimatol Palaeoecol 220:69–88CrossRefGoogle Scholar
  37. Kühl G, Briggs DEG, Rust J (2009) A great appendage arthropod with a radial mouth from the Lower Devonian Hunsrück Slate, Germany. Science 323:771–773Google Scholar
  38. Kukal Z (1995) The Lower Cambrian Paseky Shale: sedimentology. J Czech Geol Soc 40:67–78Google Scholar
  39. Lamsdell JC (2011) The eurypterid Stoermeropterus conicus from the lower Silurian of the Pentland Hills, Scotland. Monogr Palaeontogr Soc 165(636):1–84Google Scholar
  40. Lamsdell JC, Selden PA (2013) Babes in the wood—a unique window into sea scorpion ontogeny. BMC Evol Biol 13(98):1–46Google Scholar
  41. Legg DA (2013) Multi-segmented arthropods from the Middle Cambrian of British Columbia (Canada). J Paleontology 87:493–501CrossRefGoogle Scholar
  42. Legg DA, Sutton MD, Edgecombe GD, Caron J-B (2012) Cambrian bivalved arthropod reveals origin of arthrodization. Proc R Soc B 279:4699–4704PubMedCrossRefGoogle Scholar
  43. Liu Y, Hou X-G, Bergström J (2007) Chengjiang arthropod Leanchoilia illecebrosa (Hou,1987) reconsidered. GFF 129:263–272CrossRefGoogle Scholar
  44. Mikuláš R (1995) Trace fossils from the Paseky Shale (Early Cambrian, Czech Republic). J Czech Geol Soc 40:37–54Google Scholar
  45. Moberg JC (1892) Om en nyupptäekt fauna i block af kambrisk sandsten, insamlade af Dr N. O. Holst Geol Fören Stockh Förh 14:103–120CrossRefGoogle Scholar
  46. Ortega-Hernandez J, Legg DA, Braddy SJ (2013) The phylogeny of aglaspidid arthropods and the internal relationships within Artiopoda. Cladistics 29:15–45CrossRefGoogle Scholar
  47. Ou Q, Shu D, Mayer G (2012) Cambrian lobopodians and extant onychophorans provide new insights into early cephalization in Panarthropoda. Nat Commun 3(1261):1–17Google Scholar
  48. Park LE, Gierlowski-Kordesch EH (2007) Paleozoic lake faunas: establishing aquatic life on land. Palaeogeogr Palaeoclimatol Palaeoecol 249:160–179CrossRefGoogle Scholar
  49. Paterson JR, García-Bellido DC, Yee MSY, Brock GA, Jago JB, Edgecombe GD (2011) Acute vision in the giant Cambrian predator Anomalocaris and the origin of compound eyes. Nature 480:237–240Google Scholar
  50. Repina LN, Okuneva OG (1969) Cambrian arthropods of the maritime territory. Paleontological Journal 3:95–103Google Scholar
  51. Resser CE (1929) New Lower and Middel Cambrian Crustacea. Proc US Natl Mus 76:1–18CrossRefGoogle Scholar
  52. Richter S, Stein M, Frase T, Szucisch NU (2013) The arthropod head. In: Minelli A, Boxshall G, Fusco G (eds) Arthropod biology and evolution—molecules, development, morphology. Springer, Berlin, pp 223–240CrossRefGoogle Scholar
  53. Scholtz G, Edgecombe GD (2005) Heads, Hox and the phylogenetic position of trilobites. In: Koenemann S, Jenner RA (eds) Crustacea and arthropod relationships (Crustacean issues 16). Taylor & Francis, Boca Raton, pp 139–165CrossRefGoogle Scholar
  54. Scholtz G, Edgecombe GD (2006) The evolution of arthropod heads: reconciling morphological, developmental and palaeontological evidence. Dev Genes Evol 216:395–415PubMedCrossRefGoogle Scholar
  55. Stein M (2010) A new arthropod from the Early Cambrian of North Greenland, with a ‘great appendage’-like antennula. Zool J Linnean Soc 158:477–500CrossRefGoogle Scholar
  56. Stein M (2013) Cephalic and appendage morphology of the Cambrian arthropod Sidneyia inexpectans Walcott, 1911. Zoologischer Anzeiger. doi:10.1016/j.jcz.2013.05.001
  57. Stein M, Budd GE, Peel JS, Harper DAT (2013) Arthroaspis n. gen., a common element of the Sirius Passet Lagerstätte (Cambrian, North Greenland), sheds light on trilobite ancestry. BMC Evol Biol 13(99):1–34Google Scholar
  58. Stein M, Peel JS, Siveter DJ, Williams M (2010) Isoxys (Arthropoda) with preserved soft anatomy from the Sirius Passet Lagerstätte, lower Cambrian of North Greenland. Lethaia 43:258–265CrossRefGoogle Scholar
  59. Stein M, Selden PA (2012) A restudy of the Burgess Shale (Cambrian) arthropod Emeraldella brocki and reassessment of its affinities. J Syst Palaeontol 10:361–383CrossRefGoogle Scholar
  60. Stein M, Waloszek D, Maas A, Haug JT, Müller KJ (2008) The stem crustacean Oelandocaris oelandica Müller re-visited. Acta Palaeontol Pol 53:461–484CrossRefGoogle Scholar
  61. Van Roy P (2006) An aglaspidid arthropod from the Upper Ordovician of Morocco with remarks on the affinities and limitations of Aglaspidida. Trans R Soc Edinburgh Earth Sci 96:327–350Google Scholar
  62. Van Roy P, Briggs DEG (2011) A giant Ordovician anomalocaridid. Nature 473:510–513PubMedCrossRefGoogle Scholar
  63. Vannier J, Chen J-Y (2000) The Early Cambrian colonization of pelagic niches exemplified by Isoxys (Arthropoda). Lethaia 33:295–311CrossRefGoogle Scholar
  64. Vannier J, García-Bellido DC, Hu S-X, Chen A-L (2009) Arthropod visual predators in the early pelagic ecosystem: evidence from the Burgess Shale and Chengjiang biotas. Proc R Soc B 276:2567–2574PubMedCrossRefGoogle Scholar
  65. Waloszek D, Dunlop JA (2002) A larval sea spider (Arthropoda: Pycnogonida) from the Upper Cambrian ‘Orsten’ of Sweden, and the phylogenetic position of pycnogonids. Palaeontology 45:421–446CrossRefGoogle Scholar
  66. Waterston CD (1979) Problems of functional morphology and classification in stylonuroid eurypterids (Chelicerata, Merostomata), with observations on the Scottish Silurian Stylonuroidea. Trans R Soc Edinb 70:251–322CrossRefGoogle Scholar
  67. Walcott CD (1912) Cambrian geology and paleontology II. Middle Cambrian Branchiopoda, Malacostraca, Trilobita and Merostomata. Smithson Misc Collect 57:145–229Google Scholar
  68. Whiteaves JF (1892) Description of a new genus and species of phyllocarid crustacean from the Middle Cambrian of Mount Stephen, British Columbia. Can Rec Sci 5:205–208Google Scholar
  69. Whittington HB (1981) Rare arthropods from the Burgess Shale, Middle Cambrian, British Columbia. Philos Trans Roy Soc Lond B Biol Sci 292:329–357CrossRefGoogle Scholar
  70. Williams M, Siveter DJ, Peel JS (1996) Isoxys (Arthropoda) from the early Cambrian Sirius Passet Lagerstatte, North Greenland. J Paleontology 70:947–954Google Scholar
  71. Wills MA (2001) How good is the fossil record of arthropods? An assessment using the stratigraphic congruence of cladograms. Geol J 36:187–210CrossRefGoogle Scholar
  72. Yang J, Ortega-Hernández J, Butterfield NJ, Zhang X-G (2013) Specialized appendages in fuxianhuiids and the head organization of early euarthropods. Nature 494:468–471PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • James C. Lamsdell
    • 1
  • Martin Stein
    • 2
  • Paul A. Selden
    • 1
    • 3
  1. 1.Paleontological Institute and Department of GeologyUniversity of KansasLawrenceUSA
  2. 2.Natural History Museum of DenmarkCopenhagenDenmark
  3. 3.Palaeontology DepartmentNatural History MuseumLondonUK

Personalised recommendations